
© Karin Sandstrom, UC San Diego - Do not distribute without permission

Physics 239
Radiative Processes in Astrophysics

Lecture #3: Scientific Computing
then Two-Level Atom, scattering & more

radiative transfer

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Scientific Computing

Many of us get no formal training in scientific computing.
We pick it up as we go along.

However, it is a large part of what we do.

I recommend reading the above paper and trying to
implement its suggestions in your assignments for this class.

based on Wilson et al. 2014, PLoS Biology, Vol 12, Issue 1
“Best Practices for Scientific Computing”

and slides from Software Carpentry: http://swcarpentry.github.io/slideshows/best-practices/

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Summary of Best Practices
• Write programs for people not computers.

• Let the computer do the work.

• Make incremental changes.

• Don’t repeat yourself (or others).

• Plan for mistakes.

• Optimize software only after it works correctly.

• Document design and purpose, not mechanics.

• Collaborate.

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Write programs for people not
computers.

People should be able to read your code and comments and
understand what the program does.

People includes future you who will forget what you did.

Reproducibility is a goal for all of your scientific efforts.

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Write programs for people not
computers.

• A program should not require its readers to hold
more than a handful of facts in memory at once.

• Break programs into short, readable functions
taking only a few parameters.

• Make names consistent, distinctive, and meaningful.

• Make code style and formatting consistent.

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Let the computer do the work.
• Make the computer repeat tasks.

• Save recent commands in a file for re-use.

• Use a build tool to automate workflow.

Script your work.

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Let the computer do the work.

Wilson et al. 2014

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Make incremental changes.

• Work in small steps with frequent feedback and course
correction.

• Use a version control system.

• Put everything that has been created manually in version control.

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Don’t repeat yourself (or
others).

“Anything repeated in two or more places will
eventually be wrong in at least one.”

• Every piece of data must have a single authoritative
representation in the system.

• Example: defining constants once rather than in each program.

• Modularize code rather than copying and pasting.

• Re-use code rather than rewriting it (e.g. astropy or IDLAstro lib).

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Plan for mistakes.

• Add “assertions” to programs to check their operation. (to me
this is: add error checking and output feedback throughout
program)

• Unit testing. Re-run after any changes to the code.

• Turn bugs into test cases.

• Use an “interactive program inspector” for debugging. Use
breakpoints to stop program at specific points.

“defensive programming”

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Optimize software only after it
works correctly.

• Use a “profiler” to identify bottlenecks.

• reports how much time is spent on each part of code

• Write code in the highest level language possible.

• people write ~constant number of lines of code per hour
regardless of language, use the high level language first,
then optimize for speed in lower level language if needed

“get it right, then make it fast”

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Document design and purpose
not mechanics.

• Document interfaces and reasons, not implementations.

• Refactor code in preference to explaining how it works.

• “i.e., rather than write a paragraph to explain a
complex piece of code, reorganize the code itself so
that it doesn’t need such an explanation”

• Embed the documentation for a piece of software in
that software

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Collaborate

• Get collaborators to review code.

• Use pair programming when bringing someone
new up to speed and when tackling particularly
tricky problems.

• Use an issue tracking tool.

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Key Points for Physics 239

• Script your code.

• Version control.

• Write tests to make sure your code works the way
you want.

• Document your code.

© Karin Sandstrom, UC San Diego - Do not distribute without permission

a)

Resulting Spectrum

d)

2)

1)

Scenario

5)

3)

6)
f)

b)

e)

4)

c)

Below are six scenarios for radiative transfer through a intervening medium with depth D. The material has a spectral
line centered at ν0 with an approximately Gaussian line profile Φ(ν). Each scenario lists whether the medium is
optically thin or thick and if there is any difference in optical depth at line center. Match the Scenario to the Resulting
spectrum.

