PHYS 239 Lec2

yiz020@ucsd.edu

October 2, 2018

1 Radiative Transfer in medium

Set up: In the medium, we can write equation

Figure 1: Set up of scattering with medium

$$
d I_{\nu}=\underbrace{-I_{\nu} \kappa_{\nu} d s}_{\text {attenuation }}+\underbrace{j_{\nu} d s}_{\text {emission }}
$$

1.1 Mean Free Path

Definition 1 (mean free path). $\sigma_{v} \equiv$ cross section. Mean free path $=$ distance through the volume with n particles before probability of collision $=1 . N$ is the column density

$$
\begin{gathered}
N=n l,\left[\mathrm{~cm}^{-2}\right] \\
\frac{\text { Area }_{\text {coll }}}{d A}=1 \Rightarrow \frac{n l \cdot d A \cdot \sigma_{\nu}}{d A}=1 \Rightarrow l=\frac{1}{n \sigma_{\nu}}
\end{gathered}
$$

Can manipulate unit of mean free path:

$$
l=\frac{m}{m n \sigma_{\nu}}=\frac{m}{\rho \kappa_{\nu}}
$$

where κ_{v} is the mass absorption coefficient $\left[\mathrm{cm}^{2} / \mathrm{g}\right]$.

1.2 Purely absorbing

$$
d I_{\nu}=-n \sigma_{\nu} I_{\nu} d s=-\alpha_{\nu} I_{\nu} d s
$$

We can write $\alpha_{\nu}=n \sigma_{\nu}=\rho \kappa_{\nu}$ as the absorption constant. Now we have

$$
I_{\nu}(s)=I_{\nu}(0) e^{-\alpha_{\nu} s}
$$

Define

$$
\tau_{\nu}=\alpha_{\nu} s
$$

as the optical depth. We can also manipulate the unit:

$$
\tau_{\nu}=\underbrace{\kappa_{\nu} \rho s}_{\sum k_{\nu}}=\underbrace{n \sigma_{\nu} s}_{N \sigma_{\nu}}
$$

We can define two regimes:

- optically thin: $\tau_{\nu}<1$
- optically thick: $\tau_{\nu}>1$

Relationship between optical depth and mean free path:

$$
\tau_{\nu}=\frac{s}{l}
$$

1.3 Emission

Now $I_{\nu} \rightarrow 0$. Assume isotropic emission

where j_{ν} is the emissivity coefficient. We can derive its unit:

$$
\left[j_{\nu}\right]=\left[W / m^{2} / H z / s r\right]
$$

Now

$$
d E=j_{\nu} d A d s d \Omega d t d \nu \Rightarrow d I_{\nu}=j_{\nu} d s
$$

1.4 Combining Absorption and Emission

$$
\begin{gathered}
d I_{\nu}=j_{\nu} d s-\alpha i_{\nu} d s \Rightarrow \frac{d I_{\nu}}{d s}=j_{\nu}-\alpha_{\nu} I_{\nu} \\
\text { divide both sides by } \alpha_{\nu}: \frac{d I_{\nu}}{d \tau_{\nu}}=\frac{j_{\nu}}{\alpha_{\nu}}-I_{\nu} \\
\frac{d I_{\nu}}{d \tau_{\nu}}=S_{\nu}-I_{\nu}
\end{gathered}
$$

Where $S_{\nu} \equiv \frac{j_{\nu}}{\alpha_{\nu}}$ is the source function of the medium.

2 Scattering

Light entering the medium can be scattered outside of the ray. Scattering can also introduce light into the ray. This process is no longer local.

Starting with strict assumptions:

- isotropic scattering
- coherent/monochromatic scattering: the frequency and energy of the photon is unchanged $\Rightarrow \nu$ is unchanged
- τ_{ν} increases towards observers

$$
j_{\nu, s \text { satter }}=n \sigma_{\nu} J_{\nu}
$$

where σ_{ν} is the scattering cross section.

$$
J_{\nu} \equiv \frac{\int I_{\nu} d \Omega}{\int d \Omega}=\frac{1}{4 \pi} \int I_{\nu} d \Omega
$$

is the mean intensity for isotropic scattering.

2.1 Pure Scattering

Source function

$$
S_{\nu} \equiv \frac{j_{\nu}}{\alpha_{\nu}}=\frac{n \sigma_{\nu} J_{\nu}}{n \sigma_{\nu}}=J_{\nu}
$$

Now the RT differential eq becomes

$$
\frac{d I_{\nu}}{d \tau_{\nu}}=-I_{\nu}+J_{\nu}=-I_{\nu}+\frac{1}{4 \pi} \int I_{\nu} d \Omega
$$

is hard to solve: depends sensitively on the set up of the problems and initial conditions .

3 Non-Scattering setup

$$
\begin{gathered}
\frac{d I_{\nu}}{d \tau_{\nu}}=S_{\nu}-I_{\nu} \\
\text { define } \tilde{I} \equiv I_{\nu} e^{\tau_{\nu}}, \tilde{S} \equiv S_{\nu} e^{\tau_{\nu}} \\
\Rightarrow \frac{d \tilde{I}}{d \tau_{\nu}}=\underbrace{\frac{d I_{\nu}}{d \tau_{\nu}} e^{\tau_{\nu}}}_{\left(S_{\nu}-I_{\nu}\right) e^{\tau_{\nu}}}+\underbrace{I_{\nu} \frac{d e^{\tau_{\nu}}}{d \tau_{\nu}}}_{I_{\nu} e^{\tau_{\nu}}} \\
=S_{\nu} e^{\tau_{\nu}}=\tilde{S} \\
\tilde{I}\left(\tau_{\nu}\right)=\tilde{I}(0)+\int_{0}^{\tau_{\nu}} \tilde{S}\left(\tau_{\nu}^{\prime}\right) d \tau_{\nu}^{\prime} \\
I_{\nu}\left(\tau_{\nu}\right)=I_{\nu}(0) e^{-\tau_{\nu}}+\int_{0}^{\tau_{\nu}} \tilde{S}\left(\tau_{\nu}^{\prime}\right) e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)} d \tau_{\nu}^{\prime}
\end{gathered}
$$

where the first term is the background radiation field attenuated by τ_{ν}, and the second term is the emission from the material attenuated by absorption between where emitted and S (self absorption).

If S_{ν} is independent of τ_{ν} :

$$
I_{\nu}\left(\tau_{\nu}\right)=I_{\nu}(0) e^{-\tau_{\nu}}+S_{\nu} e^{-\tau_{\nu}} \int_{0}^{\tau_{\nu}} e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)} d \tau_{\nu}^{\prime}=I_{\nu}(0) e^{-\tau_{\nu}}+S_{\nu}\left(1-e^{-\tau_{\nu}}\right)
$$

When $\tau_{\nu} \gg 1$ optically thick: $I_{\nu}\left(\tau_{\nu}\right)=S_{\nu}$: the radiation only depends on the property of the medium.

When $\tau_{\nu} \ll 1$ optically thin:

$$
I_{\nu}\left(\tau_{\nu}\right)=I_{\nu}(0)\left(1-\tau_{\nu}\right)+S_{\nu}\left(1-1+\tau_{\nu}\right)=I_{\nu}(0)-\tau_{\nu} I_{\nu}(0)+S_{\nu} \tau_{\nu}
$$

Most of the radiation coming into the medium leaves the medium.

3.1 Order of magnitude estimate

What's the optical depth of a tree when you lie down beneath a tree and look up? (Write your own answer here, but $\tau_{\text {tree }} \sim 10$ sounds about right)

4 Thermal eq.

- Thermodynamic equilibrium

$$
\frac{\partial T}{\partial t}=0 \text { or } \nabla T=0, T_{r a d}=T_{k i n}=T_{e x t}
$$

- Local TE (LTE)

$$
\frac{\partial T(\vec{x})}{\partial t} \approx 0, \nabla T(\vec{x}) \sim 0
$$

Not in TE/LTE:

$$
T_{r a d} \neq T_{k i n} \neq T_{e x t}
$$

4.1 Planck function

photon occupation number:

$$
N(\nu)=\frac{1}{e^{h \nu / k T}-1}
$$

from Bose-Einstein distribution
number density of states per volume per frequency

$$
\rho_{s}=\frac{4 \pi g \nu^{2}}{c^{3}}
$$

where $c=2$ is the degeneracy for photon.
Can now write down the density of energy of radiation field:

$$
\begin{gathered}
u_{\nu}=\epsilon \rho_{s} N=\frac{4 \pi g h \nu^{3} / c^{3}}{e^{h \nu / k T}-1}, \epsilon=h \nu \text { for photons } \\
u_{\nu}(\Omega)=\underbrace{\frac{d E}{d A c d t} d \Omega d \nu}_{d V}=\frac{I_{\nu}}{c}
\end{gathered}
$$

The general energy density

$$
u_{\nu}=\int u_{\nu}(\Omega) d \Omega=\frac{1}{c} \int I_{\nu} d \Omega
$$

In TE/LTE: I_{ν} is uniform:

$$
u_{\nu}=4 \pi \frac{I_{\nu}}{c}=4 \pi J_{\nu}=\frac{4 \pi g h \nu^{3} / c^{3}}{e^{h \nu / k T}-1} \Rightarrow I_{\nu}=\frac{2 h \nu^{3} / c^{3}}{e^{h \nu / k T}-1}
$$

is the planck function.

