Physics 224 The Interstellar Medium

Lecture #13: Neutral Gas, Photodissociation Regions & the HI to H₂ transition

Outline

- Part I: Neutral Gas
- Part II: HI to H₂ Transition
- Part III: Photodissociation Regions

https://sites.google.com/site/galfahi/galfa-hi-science

part of the GALFA HI Survey colors = different velocity ranges

Do we expect to find much gas in the unstable region?

Compare thermal and dynamical timescales:

$$\tau_{\rm cool} = \frac{nkT}{\Lambda} \buildrel \leftarrow \qquad {\rm thermal\ energy\ density = pressure} \\ \leftarrow \qquad {\rm cooling\ rate\ per\ unit\ volume}$$

 τ_{cool} ~ 0.1 Myr for unstable gas with T ~ 2000 K and n ~ 1.5 cm⁻³

^{*} note same for heating since $\Gamma = \Lambda$

Do we expect to find much gas in the unstable region?

Compare thermal and dynamical timescales:

$$\tau_{\rm dyn} \sim \frac{L}{c_s}$$
 where sound speed:
$$c_s = \sqrt{\frac{kT}{m}}$$

$$\tau_{\rm dyn} \sim 6.7 {
m Myr} \left({L \over 1 {
m pc}} \right) T^{-1/2}$$

For L~10 pc, T~2000 K
$$\tau_{dyn} \sim 1.5 \ Myr$$

Unstable gas should cool quickly relative to dynamical time.

Simulations with turbulence suggest substantial amounts of gas between F&H phases

How can we test this model?

Measure the
n & T of HI gas
and see if it matches
the predicted n,T ranges
for CNM and WNM
stable phases.

Under most ISM conditions, 75% of HI is in upper level. Emissivity is independent of T_{spin} !!

$$j_{\nu} = n_u \frac{A_{ul}}{4\pi} h \nu_{ul} \phi_{\nu} = \frac{3}{16\pi} A_{ul} \ h \nu_{ul} \ n(H I) \ \phi_{\nu}$$

absorption coefficient depends inversely on T_{spin} as a consequence of <u>stimulated emission</u> not being negligible!

$$\kappa_{\nu} \approx \frac{3}{32\pi} A_{ul} \frac{hc\lambda_{ul}}{kT_{spin}} n(\text{H I})\phi_{\nu}$$

Measuring spin temperature

$$T_b^{on} = T_{bg}e^{-\tau} + T_s(1 - e^{-\tau})$$
 (1) $T_b^{off} = T_s(1 - e^{-\tau})$

Absorption - weighted to low T

Emission - independent of T

$$\langle T_{spin} \rangle = T_B/(1-e^{-\tau})$$

Assume T_{WNM} is too big to contribute much to the absorption.

 $\tau \sim n_{CNM}/T_{CNM}$

 $T_B \sim n_{CNM} + n_{WNM}$

Assume CNM dominates absorption.

Fit absorption component and emission component with same Gaussian components (σ_V) to get N_{CNM} , T_{CNM}

Fit emission component with additional Gaussian and N_{WNM}.

Get upper limit on T_{WNM} from velocity width (upper limit because of turbulent contribution).

Get lower limit on T_{WNM} from residual absorption.

Measuring absorption from the WNM requires very high S/N measurements.

observed CNM components have T ~ 40-80 K

Evidence for "unstable" phase (500 < T < 5000)

Upper limit on T_{WNM}

Important wrinkle: thermalization of HI levels in WNM

Density in the WNM is too low to thermalize levels to predicted WNM temperatures.

However, scattered Ly α radiation can contribute to thermalizing levels as well.

(Liszt 2001)

Thermal Pressure from [CI]

Thermal Pressure from [CI]

Thermal Pressure from [CI]

Jenkins & Tripp 2001, 2011

Most gas is at pressures that agree with the FGH picture, but there are tails of low & high pressure that are probably related to turbulence.

All-Sky Map of N(HI) from the Leiden-Argentine-Bonn Survey (Kalberla et al. 2005)

Kalberla & Kerp 2009, ARA&A

distance from Galactic center

Kalberla & Kerp 2009, ARA&A

Formation of H₂ by gas-phase reactions is slow

no effective way to carry away 4.5 eV worth of binding energy when two H bond, no dipole moment negligible rate for this reaction

3-body reaction can occur quicker but this is still very slow

Formation of H₂ by gas-phase reactions is slow

Fastest gas-phase route is "associative attachment"

First:

Then:

Grain Surface H₂ formation is much faster if there is dust.

Grain Surface H₂ formation is much faster if there is dust.

$$R_{\rm gr} = \frac{1}{2} \left(\frac{8kT}{\pi m_H} \right)^{1/2} \langle \epsilon_{\rm gr} \rangle \Sigma_{\rm gr}$$

V_{thermal}

average "sticking" coeff for grain pop

Grain surface area

$$\Sigma_{\rm gr} \equiv \frac{1}{n_H} \int \pi a^2 \frac{dn_{\rm gr}}{da} da$$

Photodissociation of H₂

Photodissociation of H₂

depends on quantum mechanics and radiation field intensity at relevant wavelengths

In steady state:

photodissociation

$$\varsigma_{\rm diss} n(H_2) = R_{\rm gr} n_H n(H)$$

formation on dust grains

For CNM conditions this is pretty small:

$$\frac{n(H_2)}{n_H} \approx 1.8 \times 10^{-5} \left(\frac{n(H)}{30 \text{cm}^{-3}}\right) \left(\frac{R_{\text{gr}}}{3 \times 10^{-17} \text{cm}^3 \text{s}^{-1}}\right) \left(\frac{\varsigma_{\text{diss}}}{5 \times 10^{-11} \text{s}^{-1}}\right)^{-1}$$

But we have left out an important component: shielding

Figure 2. Absorbed far-UV spectrum showing partially overlapping Lyman–Werner band absorption lines, for beamed radiation into a cloud, at a total hydrogen gas column density of 3.74×10^{20} cm⁻², for a free-space radiation intensity $I_{\rm UV} = 35.5$, gas density $n = 10^3$ cm⁻³, and metallicity Z' = 1 ($\alpha G/2 = 1$).

H₂ Lyman-Werner bands can become optically thick and shield interior H₂ from being dissociated.

At UV wavelengths even small A_V corresponds to substantial amounts of UV extinction.

Photodissociation Regions

ΗII Photodissociation Region /ery general term, can loniz. Dissoc. Front refer to anywhere that Front far-UV (<13.6 eV) $H \mid H_2$ $H^+ \mid H$ photons play key role in chemistry, ionization, etc. 0+ | radiation $T_{gas} = 10^4 \text{K} / 6 \times 10^3 \text{K} \quad 10^3 \text{K}$ 300K 104K ~2**0**K 0.6 1×10^{21} 3×10^{21}