Physics 224 The Interstellar Medium

Lecture #21: Feedback, Cosmic Rays & Closing the Loop

Outline

- Part I: Feedback
- Part II: Cosmic Rays
- Part III: Global ISM models

Radiative Feedback

Mechanical Feedback

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Mechanical Feedback

[©] Karin Sandstrom, UC San Diego - Do not distribute without permission

Mechanical Feedback

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Supernovae

Stars with masses > 8 M_☉ explode.

Supernovae produce ~10⁵³ ergs in neutrinos ~10⁵¹ ergs in kinetic energy

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Supernovae

Initially: $M_{ejecta} \sim few M_{\odot}$, $v_{ejecta} \sim 10^4 \text{ km/s}$

Phase	Characteristics	Ends when	Radius at end
Free Expansion	ballistic expansion, shock wave into ISM/CSM, ejecta cools due to adiabatic expansion, reverse shock when $P_{shocked ISM} > P_{ej}$	M _{swept} > M _{ej}	R ~ t
Sedov-Taylor	ejecta is very hot, P _{ej} >P _{ISM} expansion driven by hot gas, radiation losses are unimportant	radiative losses become important	R ~ t ^{2/5}
Snow Plow	pressure driven expansion with radiative loss, then momentum driven	shock becomes subsonic	$R \sim t^{2/7}$ $R \sim t^{1/4}$
Fadeaway	turbulence dissipates remnant structure and merges with ISM	_	_

SILCC: ${\bf SI}{\bf m}ulating$ the ${\bf Life}{\bf C}ycle$ of molecular ${\bf C}louds$

(

Stefanie Walch Philipp Girichidis Thorsten Naab Andrea Gatto Simon C. O. Glover Richard Wünsch Ralf S. Klessen Paul C. Clark Thomas Peters Dominik Derigs Christian Baczynski

Walch et al., MNRAS 454, 238 (2015) Girichidis et al., arXiv:1508.06646

KS SN rate, mixed driving

SILCC: ${\bf SI}{\bf m}ulating$ the ${\bf Life}{\bf C}ycle$ of molecular ${\bf C}louds$

(

Stefanie Walch Philipp Girichidis Thorsten Naab Andrea Gatto Simon C. O. Glover Richard Wünsch Ralf S. Klessen Paul C. Clark Thomas Peters Dominik Derigs Christian Baczynski

Walch et al., MNRAS 454, 238 (2015) Girichidis et al., arXiv:1508.06646

KS SN rate, mixed driving

Cosmic Rays

Energies and rates of the cosmic-ray particles 10⁴ Flux of Cosmic Rays Grigorov Akeno 10⁰ protons only MSU -0-1 particle per m² – second 10⁻¹ KASCADE Tibet KASCADE-Grande IceTop73 all-particle HiRes1&2 10⁻² TA2013 10⁻⁶ (GeV cm⁻²sr⁻¹s⁻¹) electrons Auger2013 Flux (m² sr s Gev)⁻¹ Model H4a Knee CREAM all particle (1 particle per m² – year) positrons **10**⁻¹¹ 10⁻⁴ Galactic E²dN/dE 10⁻¹⁶ 10⁻⁶ antiprotons **10**⁻²¹ Extra-Galactic 10⁻⁸ Fixed target Ankle HERA RHIC TEVATRON (1 particle per km² – year) 10⁻²⁶ LHC 10⁻¹⁰ 10¹⁰ 10⁰ 10² 10⁴ 10⁶ 10⁸ 10¹² 10¹² 10¹⁵ 10⁹ 10¹⁸ 10²¹ Е (GeV / particle) Energy (eV) https://masterclass.icecube.wisc.edu/en/analyses/cosmic-ray-energy-spectrum (source: Swordy – U.Chicago)

Cosmic Rays

[©] Karin Sandstrom, UC San Diego - Do not distribute without permission

Maximum energy attainable by diffusive shock acceleration is set by when B-fields can no longer confine CR.

gyroradius > scale of system

$$\begin{split} R_{\rm gyro} &= \frac{pc}{eB_{\perp}} & E_{\rm max} = eB_{\rm SNR}L \\ {\rm p=momentum} & E_{\rm max} \approx 10^{7.0} {\rm GeV} \left(\frac{L}{23 {\rm pc}}\right) \left(\frac{B_{\rm SNR}}{10 \mu {\rm G}}\right) \end{split}$$

$$E_{\rm max} \approx 10^{7.0} {\rm GeV} \left(\frac{L}{23 {\rm pc}}\right) \left(\frac{B_{\rm SNR}}{10 \mu {\rm G}}\right)$$

Supernova shocks have long been thought to be the best candidate for CR acceleration.

Recently, first direct evidence...

Accelerated protons create pions when they run into the surrounding ISM. Pions decay and produce gamma rays.

Fermi confirmation of gamma-ray spectrum following pion decay prediction for some SNRs in the MW. (Ackermann et al. 2013)

ISM Energy Density

Component	<i>u</i> (eV cm ⁻³)
Cosmic Microwave Background	0.25 (Т _{СМВ} = 2.725 К)
Gas Thermal Energy	0.49 (for nT = 3800 cm ⁻³ K)
Gas Turbulent Kinetic Energy	0.22 (for n = 1 cm ⁻³ , v _{turb} = 1 km/s)
B-Field	0.89 (for 6 µGauss)
Cosmic Rays	1.39 (see Draine ch 13)
Starlight	0.54 (for hv < 13.6 eV)

All the same order of magnitude!

How does THIS affect THIS	Gravitational Potential	Gas	Dust	Radiation Field	Cosmic Rays	Magnetic Fields	Stars
Gravitational Potential		hydrostatic pressure, dynamics, spiral arms, large scale gas stability	2nd order	2nd order	pressure confinement, dynamical influence (e.g. spiral arms)	gas dynamics, pressure arrange B-field	sets stellar mass distribution, 2nd order hydrostatic pressure -> SF
Gas	self-gravity in dense gas clouds	gas dynamics, collisional excitation, self gravity	dust growth in dense gas, collisional heating/cooling, charging, dust destruction in shocks	alters radiation field (H2 shielding, ionizing photons absorbed)	creation (shocks accelerate), collisions (CR + p+ -> γ ray), confinement (B-field)	dynamically, MHD turbulence, dynamos create/ amplify B-field	star formation
Dust	2nd order	heating/cooling gas, shielding, chemistry, metal abundance (grain sputtering)	grain-grain collisions, shielding small grains from UV	extinction (absorption & scattering)	2nd order	ionization of grains and gas, keeps B-field tied to gas	key role in SF
Radiation Field	2nd order	heating of gas, ionization, photoelectric effect	heating dust, charging grains (PE effect), destruction of small grains		2nd order	ionization of gas, keeps B-field tied to gas	key role in SF
Cosmic Rays	2nd order	ionization in dense gas, connection to B- field	2nd order	2nd order		tied closely to B- field, equipartition?	heats dense gas that forms stars
Magnetic Fields	2nd order	dynamically, MHD turbulence	grain alignment, charged grains coupled to B- field	2nd order	tied closely to B- field, equipartition?	? reconnection & dissipation	dynamically important in collapse -> SF
Stars	large part of the overall mass that sets the grav potential	SNe/winds - dynamics, nucleosynthesis (metals), radiation field generation	create & destroy dust, generate radiation field that heats dust	directly produce it	SNe shocks -> CR	2nd order	feedback shuts off SF

© Karin Sandstrom, UC San Diego - Do not distribute without permission

How does THIS affect THIS	Gravitational Potential	Gas	Dust	Radiation Field	Cosmic Rays	Magnetic Fields	Stars
Gravitational Potential		hydrostatic pressure, dynamics, spiral arms, large scale gas stability	2nd order	2nd order	pressure confinement, dynamical influence (e.g. spiral arms)	gas dynamics, pressure arrange B-field	sets stellar mass distribution, 2nd order hydrostatic pressure -> SF
Gas	self-gravity in dense gas clouds	gas dynamics, collisional excitation, self gravity	dust growth in dense gas, collisional heating/cooling, charging, dust destruction in shocks	alters radiation field (H2 shielding, ionizing photons absorbed)	creation (shocks accelerate), collisions (CR + p+ -> γ ray), confinement (B-field)	dynamically, MHD turbulence, dynamos create/ amplify B-field	star formation
Dust	2nd order	heating/cooling gas, shielding, chemistry, metal abundance (grain sputtering)	grain-grain collisions, shielding small grains from UV	extinction (absorption & scattering)	2nd order	ionization of grains and gas, keeps B-field tied to gas	key role in SF
Radiation Field	2nd order	heating of gas, ionization, photoelectric effect	heating dust, charging grains (PE effect), destruction of small grains		2nd order	ionization of gas, keeps B-field tied to gas	key role in SF
Cosmic Rays	2nd order	ionization in dense gas, connection to B- field	2nd order	2nd order		tied closely to B- field, equipartition?	heats dense gas that forms stars
Magnetic Fields	2nd order	dynamically, MHD turbulence	grain alignment, charged grains coupled to B- field	2nd order	tied closely to B- field, equipartition?	? reconnection & dissipation	dynamically important in collapse -> SF
Stars	large part of the overall mass that sets the grav potential	SNe/winds - dynamics, nucleosynthesis (metals), radiation field generation	create & destroy dust, generate radiation field that heats dust	directly produce it	SNe shocks -> CR	2nd order	feedback shuts off SF

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Global ISM Models

- FGH 1969 Thermal Instability 2 phase model
- McKee & Ostriker 1977 SNe regulated 3 phase model
- Hydrostatic Balance models Ostriker, McKee & Leroy 2010
- Simulations of SNe regulated ISM

FGH 1969 Thermal Instability

Not a full ISM model, predicts existence of two phases in thermal equil. given heating and cooling rates and average ISM pressure.

Observational prediction: CNM/WNM n,T, & filling factors

> Issues: why is P what it is?

[©] Karin Sandstrom, UC San Diego - Do not distribute without permission

MO 1977 SNe Driven 3 Phase

A SMALL CLOUD

SNe rate, ISM density structure, cloud evaporation combine to set radius (& therefore pressure) at which SN remnants overlap.

Observational prediction: filling factors of hot ionized gas, CNM/WNM, ISM pressure

Issues:

In equlibrium:

 $\begin{array}{l} heating \ from \ UV \\ \Gamma_{diffuse} \ \propto \ SFR \ \propto \ M_{self-grav} \end{array}$

balances:

cooling from far-IR lines $\Lambda_{diffuse} \propto n \propto P_{diffuse} \propto \Sigma$

Observational prediction: relationship between Σ_{tot} , $\Sigma_{self-grav}$, $\Sigma_{diffuse}$ Issues:

Observational prediction: relationship between Σ_{tot} , $\Sigma_{self-grav}$, $\Sigma_{diffuse}$ In equlibrium:

heating from UV $\Gamma_{diffuse} \propto SFR \propto M_{self-grav}$

balances:

cooling from far-IR lines $\Lambda_{diffuse} \propto n \propto P_{diffuse} \propto \Sigma$

Issues:

gravity of gas, stars, DM

In equlibrium:

thermal pressure in diffuse gas heating from UV $\Gamma_{diffuse} \propto SFR \propto M_{self-grav}$

balances:

cooling from far-IR lines $\Lambda_{diffuse} \propto n \propto P_{diffuse} \propto \Sigma$

Observational prediction: relationship between Σ_{tot} , $\Sigma_{self-grav}$, $\Sigma_{diffuse}$ Issues:

In equlibrium:

thermal pressure in diffuse gas heating from UV $\Gamma_{diffuse} \propto SFR \propto M_{self-grav}$

balances:

cooling from far-IR lines $\Lambda_{diffuse} \propto n \propto P_{diffuse} \propto \Sigma$

Observational prediction: relationship between Σ_{tot} , $\Sigma_{self-grav}$, $\Sigma_{diffuse}$

Issues:

Star Formation

Observational prediction: relationship between Σ_{tot} , $\Sigma_{self-grav}$, $\Sigma_{diffuse}$ In equlibrium:

thermal pressure in diffus<u>e</u> gas heating from UV $\Gamma_{diffuse} \propto SFR \propto M_{self-grav}$

balances:

cooling from far-IR lines $\Lambda_{diffuse} \propto n \propto P_{diffuse} \propto \Sigma$

Issues:

Global ISM Models

Test models with observables:

Easier: Stellar mass surface density Gas mass surface density Star formation rate Dust mass surface density (& dust-to-gas ratio) Mass spectrum of molecular clouds Metallicity Gas "phase" (CNM/WNM, H₂ fraction)

> <u>Harder:</u> B-field strength Cosmic ray flux

A variety of models reproduce the basic properties of the MW's ISM.

To test models need to see if they also work in conditions different from the MW, i.e. local galaxies.

[©] Karin Sandstrom, UC San Diego - Do not distribute without permission

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Beyond the MW, don't have access to the same detailed measurements. Key observations include "scaling relations" that show how gas, SFR, stars, dust are related.

The Schmidt-Kennicutt relation is a key scaling connecting galaxy averaged SF surface density and total gas surface density.

Schmidt (1959), Kennicutt (1989, 1998)

[©] Karin Sandstrom, UC San Diego - Do not distribute without permission

© Karin Sandstrom, UC San Diego - Do not distribute without permission

On kiloparsec scales, KS relation shows SF associated with H_2 and a variety of HI-to- H_2 ratios

Image from: https://public.nrao.edu/AlmaExtras/

EDGING INTO THE UNKNOWN

After 35 years, the Voyager 1 spacecraft may finally be nearing the edge of the Solar System — the heliopause — but the probe's readings are proving difficult to interpret. Its sister craft, Voyager 2, is probably a few years away from reaching the milestone.

VOYAGER 1

Launched 5 September 1977. Current distance from Sun: 18.2 billion kilometres.

BOW SHOCK?

A shock wave of ionized gas. Latest observations suggest the Solar System is not moving through the interstellar medium fast enough to create one.

VOYAGER 2 Launched 20 August 1977. Current distance from Sun: 14.9 billion kilometres.

INTERSTELLAR SPACE

HELIOPAUSE

SUN

The boundary of the Solar System, where the outward pressure of the heliosphere is in balance with the inward push of the interstellar medium.

HELIOSPHERE

The extended bubble of solar particles streaming into the interstellar medium. It is nearest to the Sun in the direction of the Solar System's motion through space.

TERMINATION SHOCK

Past this boundary, particles streaming from the Sun slow to subsonic speed. Voyager 1 crossed it in December 2004; Voyager 2 in August 2007.

EDGING INTO THE UNKNOWN

Cowen, Nature, 2012

PHERE

ended bubble of

articles streaming

n. It is nearest to

in the direction

Solar System's

through space.

interstellar