Physics 224 The Interstellar Medium Lecture #2 Part I: Overview of Milky Way's ISM • Part II: Collisional Processes Part III: Statistical Mechanics ## The Milky Way Dark Matter: ~10¹² M_☉ Stellar Mass: ~10¹¹ M_☉ ISM Mass: ~6x10⁹ M_☉ Not the same in all galaxies, some have different ISM/ stellar mass ratios. GASS Survey (Catinella et al. 2012) #### The Contents of the ISM - Gas - Dust - Photons - Cosmic Rays - Magnetic Fields Note: ISM resides in the gravitational potential set by dark matter and stellar mass of a galaxy (sometimes gas mass matters too). #### ISM Gas in MW, approx. 23% ionized, 60% neutral, 17% molecular | Name | T (K) | Ionization | frac of volume | density (cm ⁻³) | P ~ nT (cm ⁻³ K) | |-------------------------|-------|----------------|----------------|----------------------------------|-----------------------------------| | hot ionized
medium | 106 | H+ | 0.5(?) | 0.004 | 4000 | | ionized gas (HII & WIM) | 104 | H+ | 0.1 | 0.2-104 | 2000 - 108 | | warm neutral medium | 5000 | H ⁰ | 0.4 | 0.6 | 3000 | | cold neutral medium | 100 | H ⁰ | 0.01 | 30 | 3000 | | diffuse molecular | 50 | H_2 | 0.001 | 100 | 5000 | | dense molecular | 10-50 | H_2 | 10-4 | 10 ³ -10 ⁶ | 10 ⁵ - 10 ⁷ | #### ISM Dust Gas & dust are well correlated in the disk of the Milky Way, but gas/dust ratio can & does vary. | Element | Abundance | A | M/M _H | | |---------|----------------------------|----|------------------|--| | С | 0.6 x 4.0×10 ⁻⁴ | 12 | 0.0029 | | | Mg | 4.0×10 ⁻⁵ | 24 | 0.0010 | | | Fe | 3.4×10 ⁻⁵ | 56 | 0.0019 | | | Si | 3.8×10 ⁻⁵ | 28 | 0.0011 | | | 0 | 0.2 × 8.0×10 ⁻⁴ | 16 | 0.0022 | | | Total | | | 0.009 | | Dust is mainly composed of C, Mg, Fe, Si, and O. MW Dust-to-H Ratio ~0.009 Small sub-µm size grains (can tell from reddening) #### ISM Radiation Field Average Interstellar Radiation Field varies from place to place to place depending on local processes #### Cosmic Rays Very energetic particles pervading the ISM. Dominated by protons, but also includes other nuclei and e-. ## Magnetic Fields ## ISM Energy Density | Component | <i>u</i> (eV cm ⁻³) | |------------------------------|---| | Cosmic Microwave Background | $0.25 (T_{CMB} = 2.725 K)$ | | Gas Thermal Energy | 0.49 (for nT = 3800 cm ⁻³ K) | | Gas Turbulent Kinetic Energy | $0.22 \text{ (for n = 1 cm}^{-3}, V_{turb} = 1 \text{ km/s)}$ | | B-Field | 0.89 (for 6 μGauss) | | Cosmic Rays | 1.39 (see Draine ch 13) | | Starlight | 0.54 (for hv < 13.6 eV) | All the same order of magnitude! ## The ISM is Complex - Huge dynamic ranges in density, temperature. - Very dense regions of the ISM are "ultra-high" vacuum - ISM conditions are tough to reproduce in a lab. - Most processes are not in thermodynamic equilibrium - low density means long equilibrium timescales. - Processes are interconnected in feedback loops. | How does THIS affect THIS | Gravitational
Potential | Gas | Dust | Radiation Field | Cosmic Rays | Magnetic Fields | Stars | |----------------------------------|---|---|---|--|--|---|---| | Gravitational
Potential | | hydrostatic
pressure,
dynamics, spiral
arms, large scale
gas stability | 2nd order | 2nd order | pressure
confinement,
dynamical
influence (e.g.
spiral arms) | gas dynamics,
pressure arrange
B-field | sets stellar mass
distribution, 2nd
order hydrostatic
pressure -> SF | | Gas | self-gravity in
dense gas
clouds | gas dynamics,
collisional
excitation, self
gravity | dust growth in dense
gas, collisional
heating/cooling,
charging, dust
destruction in shocks | alters radiation
field (H2
shielding,
ionizing photons
absorbed) | creation (shocks accelerate), collisions (CR + p+ -> γ ray), confinement (B-field) | dynamically,
MHD turbulence,
dynamos create/
amplify B-field | star formation | | Dust | 2nd order | heating/cooling
gas, shielding,
chemistry, metal
abundance (grain
sputtering) | grain-grain
collisions,
shielding small
grains from UV | extinction
(absorption &
scattering) | 2nd order | ionization of
grains and gas,
keeps B-field tied
to gas | key role in SF | | Radiation Field | 2nd order | heating of gas,
ionization,
photoelectric
effect | heating dust,
charging grains
(PE effect),
destruction of
small grains | | 2nd order | ionization of gas,
keeps B-field tied
to gas | key role in SF | | Cosmic Rays | 2nd order | ionization in
dense gas,
connection to B-
field | 2nd order | 2nd order | | tied closely to B-
field,
equipartition? | heats dense gas
that forms stars | | Magnetic Fields | 2nd order | dynamically,
MHD turbulence | grain alignment,
charged grains
coupled to B-
field | 2nd order | tied closely to B-
field,
equipartition? | ? reconnection & dissipation | dynamically important in collapse -> SF | | Stars © Karin Sandstrom, UC San | large part of the overall mass that sets the grav potential | SNe/winds -
dynamics,
nucleosynthesis
(metals), radiation
field generation | create & destroy
dust, generate
radiation field
that heats dust | directly produce
it | SNe shocks ->
CR | 2nd order | feedback shuts
off SF | © Karin Sandstrom, UC San Diego - Do not distribute without permission # Collisions govern many key ISM processes - Distribute energy among particles in the gas (ie from e- ejected from dust by the photoelectric effect or photoionization) - Collisional Ionization - Recombination - Collisional Excitation (can lead to radiative deexcitation and loss of energy from gas) - Chemical reactions - Gas-dust grain collisions, grain-grain collisions. - Etc, etc, etc