Physics 224
The Interstellar Medium

Lecture #2
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* Part I: Overview of Milky Way's ISM
e Part ll: Collisional Processes

e Part lll: Statistical Mechanics
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The Milky Way
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GASS Survey
(Catinella et al. 2012)
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The Contents of the ISM

* (as
Note: ISM resides in the
e Dust gravitational potential set by dark
matter and stellar mass of a galaxy
e Photons (sometimes gas mass matters too).

» Cosmic Rays

* Magnetic Fields
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ISM Gas

in MW, approx. 23% ionized, 60% neutral, 17% molecular

Name lonization frac of volume density (cm=3) P~ nT (cm-3 K)

hot |_on|zed 5" 4000
medium

ionized gas (HIl & 4 N 104 _ 108
WIM) 10 H 0.1 0.2-10 2000 - 10

warm neutral 5000 Ho 0.4 0.6 3000
medium

cold_neutral 100 0 001 30 3000
medium

diffuse molecular 50 Ho 0.001 100 5000

dense molecular 10-50 Ho 104 103-106 10° - 107
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ISM Dust

Gas & dust are well correlated in the disk of the Milky Way,
but gas/dust ratio can & does vary.

Element | Abundance A M/My
C 0.6 x4.0x104| 12 | 0.0029
Mg 4.0x10-5 24 | 0.0010
Fe 3.4x10°5 56 | 0.0019

Si 3.8x10°5 28 | 0.0011

O 0.2x80x10#| 16 | 0.0022
Total 0.009
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Dust is mainly composea
of C, Mg, Fe, Si, and O.

MW Dust-to-H Ratio
~0.009

Small sub-pm size grains
(can tell from reddening)



ISM Radiation Field
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Very energetic

particles pervading
the ISM.

Dominated by
protons, but also
includes other
nuclei and e-.



Magnetic Fields
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gas throughout the Milky Way.
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ISM Energy Density

Component u (eV cm3)

Cosmic Microwave Background [V :-ERNF4NS)
Gas Thermal Energy 0.49 (for nT = 3800 cm-3 K)

Gas Turbulent Kinetic Energy 0.22 (forn =1 cm=3, Viub = 1 km/s)
B-Field 0.89 (for 6 pGauss)
Cosmic Rays 1.39 (see Draine ch 13)

Starlight 0.54 (for hv < 13.6 V)

All the same order of magnitude!
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The ISM is Complex

e Huge dynamic ranges in density, temperature.

« Very dense regions of the ISM are “ultra-high” vacuum
- ISM conditions are tough to reproduce in a lab.

* Most processes are not in thermodynamic equilibrium
- low density means long equilibrium timescales.

» Processes are interconnected in feedback loops.
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STARS extragalactic
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Gravitational
Potential

How does
THIS affect THIS

Radiation Field

Cosmic Rays

Magnetic Fields

Gravitational
Potential

self-gravity in
dense gas
clouds
“ o
Radiation Field 2nd order
o
Magnetic Fields 2nd order

large part of the
overall mass that
sets the grav
potential

hydrostatic
pressure,
dynamics, spiral
arms, large scale
gas stability

gas dynamics,
collisional
excitation, self
gravity

heating/cooling
gas, shielding,
chemistry, metal
abundance (grain
sputtering)

heating of gas,
ionization,
photoelectric
effect

ionization in
dense gas,
connection to B-
field

dynamically,
MHD turbulence

SNe/winds -
dynamics,
nucleosynthesis
(metals), radiation
field generation
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2nd order

dust growth in dense
gas, collisional
heating/cooling,
charging, dust

destruction in shocks

grain-grain

collisions,
shielding small
grains from UV

heating dust,
charging grains
(PE effect),
destruction of
small grains

2nd order

grain alignment,
charged grains
coupled to B-
field

create & destroy
dust, generate
radiation field
that heats dust

2nd order

alters radiation
field (H2
shielding,
ionizing photons
absorbed)

extinction
(absorption &
scattering)

2nd order

2nd order

directly produce
it

pressure
confinement, gas dynamics,
dynamical pressure arrange
influence (e.g. B-field
spiral arms)
creation (shocks dynamically,
accelerate), collisions MHD turbulence,
(C? +p+->y rf?y)’ dynamos create/
confinement (B-field) amplify B-field
ionization of
grains and gas,
andorder  ceps B-field tied
to gas
ionization of gas,
2nd order keeps B-field tied

to gas

tied closely to B-
field,
equipartition?

tied closely to B-
field,
equipartition?

? reconnection &
dissipation

SNe shocks ->

CR 2nd order

sets stellar mass
distribution, 2nd

order hydrostatic
pressure -> SF

star formation

key role in SF

key role in SF

heats dense gas
that forms stars

dynamically
important in
collapse -> SF

feedback shuts
off SF



Collisions govern many
key ISM processes

* Distribute energy among particles in the gas (ie from e- ejected
from dust by the photoelectric effect or photoionization)

e Collisional lonization
e Recombination

e Collisional Excitation (can lead to radiative deexcitation and loss
of energy from gas)

e Chemical reactions
» Gas-dust grain collisions, grain-grain collisions.

e Etc, etc, etc
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