Ionized Bubbles in the ISM

The Physical State of Interstellar Hydrogen Authored by: Bengt Strömgren Presentation by: Nathan Butcher

Motivation

- In 1934, a paper by Arthur Eddington about the density of metals states the hydrogen in the ISM almost entirely neutral (even molecular)
- Only very close to a star will hydrogen get ionized.
- The photons with E ≥ 13.6 eV will be absorbed and "transmuted" to lower energies.
- Bengt Strömgren performed a theoretical analysis of the ionized region

Saha Equation

• Equibrium ratio of ionized and neutral hydrogen can be calculated with the Saha equation (Draine eq. 3.16)

$$\frac{N''N_e}{N'} = \frac{(2\pi m_e)^{3/2}}{h^3} \frac{2q''}{q'} (kT)^{3/2} e^{-I/kT} \cdot \sqrt{\frac{T_{\rm el}}{T}} \cdot w \ e^{-\tau_u}$$

 $w = \frac{R^2}{4s^2}$ Is called the dilution factor

Assumptions

- Assume all electrons come from hydrogen (N_e = N"). Greatly simplifies the problem. Validity will be discussed later.
- Assume the absorption coefficient per hydrogen atom (a_u) to be independent of wavelength. This is valid because the cross section approximately drops off as v^{-3} (Draine 2010, eq. 13.3) so only a small portion of the spectrum will cause ionizations.

Degree of Ionization

• Introduce the degree of ionization, x, as a new variable. This allows for quantities to be rewritten

$$N = N' + N'',$$

$$N'' = xN,$$

$$N' = (I - x)N,$$

$$N_e = xN,$$

Rewriting the Saha Equation

• The Saha equation can now be rewritten as

$$\frac{x^2}{\mathbf{I} - x} N = C_{\mathbf{I}} \cdot \frac{\mathbf{I}}{s^2} \cdot e^{-\tau_u}$$

$$C_{I} = IO^{-0.5I-\theta I} \cdot \frac{2q''}{q'} \sqrt{\frac{T_{el}}{T}} T^{3/2} \cdot R^{2}$$
$$\theta = \frac{5040^{\circ}}{T}$$

Method

$$d\tau_u = (\mathbf{I} - x) N a_u \cdot \mathbf{3.08} \cdot \mathbf{10^{18}} ds$$

Solve for (1-x) and plug into the rewritten Saha equation on the previous slide to get

$$e^{-\tau_u}d\tau_u = \frac{N^2}{C_1} x^2 s^2 \cdot 3.08 \cdot 10^{18} a_u ds$$

Method

$$y = e^{-\tau_u} \qquad (\mathbf{I} \ge y > \mathbf{0})$$

$$dz = \frac{N^2}{C_1} \cdot 3.08 \cdot 10^{18} a_u \cdot s^2 ds$$

Set z = 0 for s = 0 to write

$$s = \left(\frac{3C_{I}}{N^{2} \cdot 3.08 \cdot 10^{18}a_{u}}\right)^{1/3} \cdot z^{1/3}$$

Note that this implies y = 1 when z = 0.

Method

$$\frac{dy}{dz} = -x^2$$

$$\frac{\mathbf{I}-x}{x^2} = \alpha \frac{\mathbf{I}}{y} z^{2/3}$$

$$\alpha = \left(\frac{9}{NC_{I} \cdot (3.08 \cdot 10^{18}a_{u})^{2}}\right)^{1/3}$$

1

When z is small, if a is small and y is not much less than 1 then x is nearly 1.

As z goes to 1, y becomes small compared to 1. This causes x to quickly go to zero.

Strömgren Sphere

- There is a radius, s₀, within which hydrogen is almost fully ionized. Outside of s₀, hydrogen is almost fully neutral. This sphere of ionized hydrogen is not called a "Strömgren sphere."
- As soon as neutral hydrogen is present, the distance ionizing radiation can travel decreases rapidly, which leads to the sharp boundary.

$$s_{0} = \left(\frac{3C_{I}}{N^{2} \cdot 3.08 \cdot 10^{18}a_{u}}\right)^{1/3}$$

Eq. From Stromgren, 1939

Electron Number Density

- If the HII region has a high density of helium, it will only be ionized in an even smaller radius than the radius of hydrogen. Close to the edge of the HII region, helium is neutral.
- If the HII region has a low density of helium, the ionized region will be of a similar size to that of hydrogen. However, the contribution of electrons by helium is small due to the low relative density

Dependence on a

x²	s/s.		
	a=0.001	a=0.01	a=0.1
I.O	0.000	0.000	0.00
0.8	I.000	o.988	0.82
0.6	I.002	I.009	0 .97
0.4	I.003	I.020	1.05
0.2	I.004	I.028	I.I2

The quantity (as_0) is independent of C_1 , so the width of the transition does not depend on any characteristics of the star, just on a.

s0 for Different Stars

Sp.	Т	$M_{ m vis}$	So
O5 O6 O7 O7 O8 O9 B0 B0 B1 B2 B3 B3 B4 B5 A0	79,000° 63,000 50,000 40,000 32,000 25,000 23,000 20,000 18,600 17,000 15,500 10,700	$ \begin{array}{r} -4^{m}2 \\ -4.1 \\ -4.0 \\ -3.9 \\ -3.6 \\ -3.1 \\ -2.5 \\ -1.8 \\ -1.2 \\ -1.0 \\ -0.8 \\ +0.9 \\ \end{array} $	140 parsecs $\times N^{-2/3}$ 110 87 66 46 26 17 11 7.2 5.2 3.7 0.5

Recent Work

- Problems with analytic solutions make excellent tests for numerical codes.
- The radius of the Strömgren sphere generated by a single frequency source has an analytic solution.
- Numerical radiative transfer methods should be able to reproduce the analytic result accurately. This was tested in Iliev, et al. (2006)

Code Test

- Hydrogen only, kept a fixed temperature of 10⁴ K.
- Density of 10⁻³ cm⁻³.
- Source emits only 13.6 eV photons at a rate of $5 \times 10^{48} \text{ s}^{-1}$.
- Case B recombination coefficient used.

Analytic Expressions

The position of the ionization front at time t is given by the expression

$$r_I = r_s (1 - e^{-t/t_{rec}})^{1/3}$$

 $\rm r_{s}$ is the Strömgren radius

$$r_s = \left(\frac{3\dot{N}_{\gamma}}{4\pi\alpha_{\beta}(T)n_H^2}\right)^{1/3}$$

 $t_{_{\rm rec}}$ is the recombination time (around 122.4 Myr)

$$t_{rec} = (\alpha_\beta n_H)^{-1}$$

Eq. from Iliev, et al. 2006

Results of Recent Work

Figure from Iliev, et al. 2006

Results of Recent Work

Figure from Iliev, et al. 2006

Citations

- Strömgren, Bengt. "The Physical State of Interstellar Hydrogen." The Astrophysical Journal 89 (1939): 526.
- Eddington, Arthur Stanley. "The density of interstellar calcium and sodium." Monthly Notices of the Royal Astronomical Society 95 (1934): 2.
- Iliev, Ilian T., et al. "Cosmological radiative transfer codes comparison project—I. The static density field tests." Monthly Notices of the Royal Astronomical Society 371.3 (2006): 1057-1086.
- Draine, Bruce T. Physics of the interstellar and intergalactic medium. Princeton University Press, 2010.