Physics 224 The Interstellar Medium

Lecture #18

Observed Characteristics

- Self-Gravity
- Turbulence
- Substructure
- Magnetic Fields
- Mass Spectrum
- Lifetimes
- Star Formation

Observed Characteristics

- Self-Gravity
- Turbulence
- Substructure
- Magnetic Fields
- Mass Spectrum
- Lifetimes
- Star Formation

 $\frac{1}{2}\ddot{I} = 2(\mathcal{T} - \mathcal{T}_S) + \mathcal{B} + \mathcal{W} - \frac{1}{2}\frac{d}{dt}\int_{S} (\rho \mathbf{v}r^2) \cdot d\mathbf{S}$

Virial Theorem

for cloud in equilibrium between gravitational force and magnetic field

$$0 = \mathcal{B} + \mathcal{W} = \frac{\Phi_B^2}{6\pi^2 R} - \frac{3}{5} \frac{GM^2}{R} \equiv \frac{3}{5} \frac{G}{R} \left(M_{\Phi}^2 - M^2 \right)$$

where $\Phi_B = \pi B R^2$ magnetic flux through cloud

Observed Characteristics

and

- Self-Gravity
- Turbulence
- Substructure
- Magnetic Fields
- Mass Spectrum
- Lifetimes
- Star Formation

 $\frac{1}{2}\ddot{I} = 2(\mathcal{T} - \mathcal{T}_S) + \mathcal{B} + \mathcal{W} - \frac{1}{2}\frac{d}{dt}\int_S (\rho \mathbf{v}r^2) \cdot d\mathbf{S}$

Virial Theorem

for cloud in equilibrium between gravitational force and magnetic field

$$0 = \mathcal{B} + \mathcal{W} = \frac{\Phi_B^2}{6\pi^2 R} - \frac{3}{5} \frac{GM^2}{R} \equiv \frac{3}{5} \frac{G}{R} \left(M_{\Phi}^2 - M^2 \right)$$

 $M_{\Phi} = \sqrt{rac{5}{2}} \left(rac{\Phi_B}{3\pi G^{1/2}}
ight) ~~~ magnetic$ critical mass"

Observed Characteristics

- Self-Gravity
- Turbulence
- Substructure
- Magnetic Fields
- Mass Spectrum
- Lifetimes
- Star Formation

"magnetic critical mass"

if $M > M_{\Phi}$ then $\mathcal{B} + \mathcal{W} < 0$

and the cloud will collapse

"magnetically super-critical" means B-field is not strong enough to support cloud against gravitational collapse

Observed Characteristics

- Self-Gravity
- Turbulence
- Substructure
- Magnetic Fields
- Mass Spectrum
- Lifetimes
- Star Formation

Observed Characteristics

- Self-Gravity
- Turbulence
- Substructure
- Magnetic Fields
- Mass Spectrum
- Lifetimes
- Star Formation

Observed Characteristics

- Self-Gravity
- Turbulence
- Substructure
- Magnetic Fields
- Mass Spectrum
- Lifetimes
- Star Formation

Kawamura et al. 2009

If star formation rate is constant, relative numbers of clouds in each evolutionary state, plus ages of clusters when no molecular gas is around gives you cloud lifetimes.

~20-30 Myr

Star Formation

	Clouds ^a	Clumps ^b	Cores ^c
Mass (M _☉)	$10^3 - 10^4$	50-500	0.5-5
Size (pc)	2-15	0.3-3	0.03-0.2
Mean density (cm ⁻³)	50-500	$10^{3}-10^{4}$	$10^{4}-10^{5}$
Velocity extent (km s ⁻¹)	2-5	0.3-3	0.1-0.3
Crossing time (Myr)	2–4	≈1	0.5-1
Gas temperature (K)	≈10	10-20	8-12
Examples	Taurus, Oph, Musca	B213, L1709	L1544, L1498, B68

Table 1 Properties of dark clouds, clumps, and cores

^aCloud masses and sizes from the extinction maps by Cambrésy (1999), velocities and temperatures from individual cloud CO studies.

^bClump properties from Loren (1989) (¹³CO data) and Williams, de Geus & Blitz (1994) (CO data).

^cCore properties from Jijina, Myers & Adams (1999), Caselli et al. (2002a), Motte, André & Neri (1998), and individual studies using NH₃ and N₂H⁺.

Bergin & Tafalla 2007

Star Formation

At small scales in clouds, thermal pressure support takes over from turbulence.

Cores in Molecular Clouds

a Barnard 68 K band

 $A_V = r_V^{H,K} E(H - K)$ $A_V = f N_H$ $N_H = (r_V^{H,K} f^{-1}) \cdot E(H - K)$

·

b L1544 1.2 mm continuum

10

Radius (arcsec)

0.2

100

C ρ Oph core D 7 μ m image

1 arcmin

The Initial Mass Function

Number of stars per unit log(M) that are formed.

Controversy persists over whether it is the same everywhere.

Fig. 1.— IMF functional forms proposed by various authors from fits to Galactic stellar data. With the exception of the Salpeter slope, the curves are normalized such that the integral over mass is unity. When comparing with observational data, the normalization is set by the total number of objects as shown in Figure 2.

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Protostars

Gravitational collapse

Angular momentum -> disk formation -> outflows & jets

Most material is in a disk, accretion onto protostar through disk.

Most material accreted, remnant disk.

Recent results suggest that UV radiation output of a SSP is sensitive to binary evolution.

Mechanical Feedback

Mechanical Feedback

[©] Karin Sandstrom, UC San Diego - Do not distribute without permission

Mechanical Feedback

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Stars with masses > 8 M_☉ explode.

Supernovae produce ~10⁵³ ergs in neutrinos ~10⁵¹ ergs in kinetic energy

Initially: $M_{ejecta} \sim few M_{\odot}$, $v_{ejecta} \sim 10^4 \text{ km/s}$

Phase	Characteristics	Ends when	Radius & time dependence
Free Expansion	ballistic expansion, shock wave into ISM/CSM, ejecta cools due to adiabatic expansion, reverse shock when $P_{shocked ISM} > P_{ej}$	M _{swept} > M _{ej}	R ~ t
Sedov-Taylor	ejecta is very hot, P _{ej} >P _{ISM} expansion driven by hot gas, radiation losses are unimportant	radiative losses become important	R ~ t ^{2/5}
Snow Plow	pressure driven expansion with radiative loss, then momentum driven	shock becomes subsonic	$R \sim t^{2/7}$ $R \sim t^{1/4}$
Fadeaway	turbulence dissipates remnant structure and merges with ISM	_	-

Tycho SN Remnant in x-rays from Chandra

(Credit: NASA/CXC/GSFC/B.Williams et al;)

Tycho SN Remnant in x-rays from Chandra

(Credit: NASA/CXC/GSFC/B.Williams et al;)