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The Interstellar Medium

Lecture #18



© Karin Sandstrom, UC San Diego - Do not distribute without permission

Molecular Clouds
Observed Characteristics

• Self-Gravity 

• Turbulence 

• Substructure 

• Magnetic Fields 

• Mass Spectrum 

• Lifetimes 

• Star Formation



© Karin Sandstrom, UC San Diego - Do not distribute without permission

Molecular Clouds
Observed Characteristics

• Self-Gravity 

• Turbulence 

• Substructure 

• Magnetic Fields 

• Mass Spectrum 

• Lifetimes 

• Star Formation

Virial Theorem
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“magnetic critical mass”

if

then

and the cloud will collapse

“magnetically super-critical” 
means B-field is not strong enough 

to support cloud against gravitational collapse
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Crutcher 2012

Molecular clouds fall in 
magnetically “supercritical” range

i.e. B-field alone cannot 
prevent collapse
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γMW = -1.5 ± 0.1

Rosolowsky 2005
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Molecular Clouds
Colombo et al. 2014 - PAWS survey of M51
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Molecular Clouds
Observed Characteristics

• Self-Gravity 

• Turbulence 

• Substructure 

• Magnetic Fields 

• Mass Spectrum 

• Lifetimes 

• Star Formation

Kawamura et al. 2009 If star formation 
rate is constant,  

relative numbers of 
clouds in each 

evolutionary state, 
plus ages of 

clusters when no 
molecular gas is  
around gives you 
cloud lifetimes.

~20-30 Myr
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Star Formation

Bergin & Tafalla 2007
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Larson 1981

At small scales in clouds, thermal pressure 
support takes over from turbulence.

“Larson’s Laws”

Star Formation
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Cores in Molecular Clouds

Bergin & Tafalla 2007

Column density 
profiles of dense 

cores are similar to 
Bonnor-Ebert 

profile (isothermal, 
marginally stable 
spherical cloud, 

supported against 
collapse by 
pressure)
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Alves et al. 2007
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Alves et al. 2007

x 1/3
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The Initial 
Mass Function

Offner et al. 2014

Number of 
stars per unit log(M) 

that are formed. 

Controversy persists 
over whether it is the 

same everywhere.
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Bastian et al. 2010 ARA&A
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Offner et al. 2014

When does the CMF map 
to the IMF?
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Isella 2006

Gravitational collapse

Angular momentum  
-> disk formation 
-> outflows & jets

Most material is in a disk, 
accretion onto protostar 

through disk.

Most material accreted, 
remnant disk.

Protostars
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Radiative Feedback

We can get a sense 
of the radiative input 

from stellar population 
from “simple stellar 
population models”

Conroy et al. 2013 
ARA&A
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Radiative Feedback
Eldridge et al. 2017 

BPASS Models
Recent results 
suggest that  
UV radiation 

output of a SSP  
is sensitive to 

binary evolution.
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Radiative Feedback
Leroy et al. 2012
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Radiative Feedback
Parvanno et al. 2003
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Mechanical Feedback
Agertz et al. 2013
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Mechanical Feedback
Agertz et al. 2013 fraction into ionization, 

photoelectric heating, 
dust heating? 

deposited where?
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Mechanical Feedback
Agertz et al. 2013 fraction into ionization, 

photoelectric heating, 
dust heating? 

deposited where?

which phases is this 
deposited into, at what 

distances from stars?
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Supernovae
Woosley et al. 2002

Stars with 
masses > 8 M⦿ 

explode. 

Supernovae  
produce  

~1053 ergs in  
neutrinos 

~1051 ergs in 
kinetic energy
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Supernovae

Phase Characteristics Ends when… Radius & time 
dependence

Free Expansion
ballistic expansion, shock wave into 
ISM/CSM, ejecta cools due to 
adiabatic expansion, reverse shock 
when Pshocked ISM > Pej

Mswept  > Mej R ~ t

Sedov-Taylor
ejecta is very hot, Pej>PISM  expansion 
driven by hot gas, radiation losses are 
unimportant

radiative losses 
become important R ~ t2/5

Snow Plow pressure driven expansion with 
radiative loss, then momentum driven

shock becomes 
subsonic

R ~ t2/7 
R ~ t1/4

Fadeaway turbulence dissipates remnant 
structure and merges with ISM - -

Initially: Mejecta ~ few M⦿, vejecta ~104 km/s
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Supernovae

(Credit: NASA/CXC/GSFC/B.Williams et al;)

Tycho SN Remnant in x-rays from Chandra
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Supernovae

(Credit: NASA/CXC/GSFC/B.Williams et al;)

Tycho SN Remnant in x-rays from Chandra


