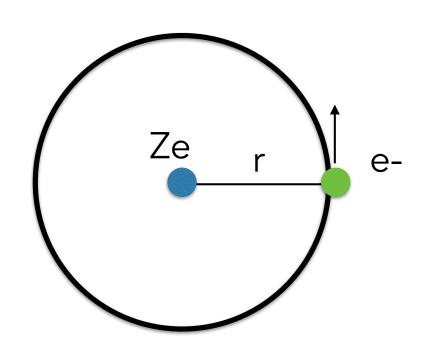

Physics 224 The Interstellar Medium

Lecture #4

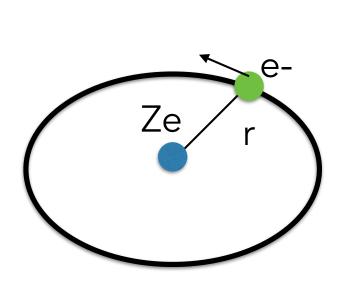
- Part I: Order of Magnitude Energy Levels
- Part II: Energy Levels & Transitions in Atoms
- Next: Radiative Transfer


Classical non-relativistic atom

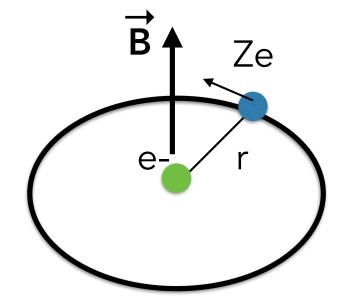
First "allowed transitions"

Coulomb interactions between e- and nucleus

Classical non-relativistic atom

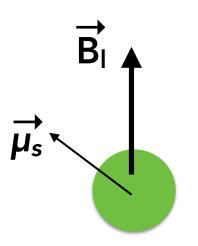


First "allowed transitions"

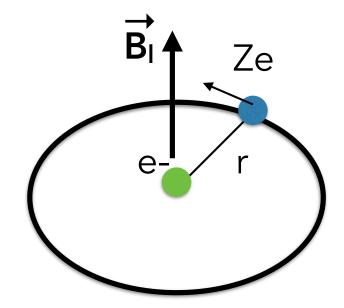

Coulomb interactions between e- and nucleus

 $E \sim 13.6 \text{ eV} (Z^2/n^2)$

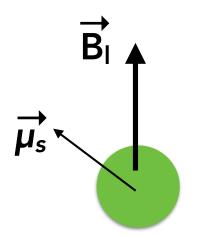
Classical non-relativistic atom



from nucleus's point of view


from e- point of view orbiting proton generates B-field

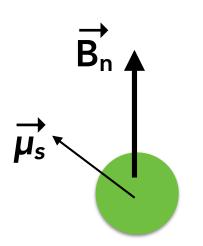
Classical non-relativistic atom


Spin-Orbit coupling!

spin magnetic moment of electron interacts with orbit B-field

from e- point of view orbiting proton generates B-field

Classical non-relativistic atom



spin magnetic moment of electron interacts with orbit B-field "fine structure" transitions

interaction between spin and angular momentum of e-

 $E \sim 13.6 \text{ eV} (\alpha^2 Z^4/n^5)$

Classical non-relativistic atom

spin magnetic moment of electron interacts with B-field from nuclear spin "hyperfine structure" transitions

interaction between magnetic moments of nucleus and e-

 $E \sim 13.6 \text{ eV } (m_e/m_n)(\alpha^2 Z^4/n^5)$

"Allowed" Electric Dipole

 $E \sim 13.6 \text{ eV} (Z^2/n^2)$

"Forbidden" Fine Structure

 $E \sim 13.6 \text{ eV} (\alpha^2 Z^4/n^5)$

"Forbidden" Hyperfine Structure

 $E \sim 13.6 \text{ eV } (m_e/m_n)(\alpha^2 Z^4/n^5)$

Table 1: Element abundances in the present-day solar photosphere. Also given are the corresponding values for CI carbonaceous chondrites (Lodders, Palme & Gail 2009). Indirect photospheric estimates have been used for the noble gases (Sect. 3.9).

	Elem.	Photosphere	Meteorites		Elem.	Photosphere	Meteorites
1	H	12.00	8.22 ± 0.04	44	Ru	1.75 ± 0.08	1.76 ± 0.03
2	He	$[10.93 \pm 0.01]$	1.29	45	Rh	0.91 ± 0.10	1.06 ± 0.04
3	$_{ m Li}$	1.05 ± 0.10	3.26 ± 0.05	46	Pd	1.57 ± 0.10	1.65 ± 0.02
4	${\bf Be}$	1.38 ± 0.09	1.30 ± 0.03	47	$\mathbf{A}\mathbf{g}$	0.94 ± 0.10	1.20 ± 0.02
5	В	2.70 ± 0.20	2.79 ± 0.04	48	Cd		1.71 ± 0.03
6	C	8.43 ± 0.05	7.39 ± 0.04	49	In	0.80 ± 0.20	0.76 ± 0.03
7	N	7.83 ± 0.05	6.26 ± 0.06	50	Sn	2.04 ± 0.10	2.07 ± 0.06
8	O	8.69 ± 0.05	8.40 ± 0.04	51	$\mathbf{S}\mathbf{b}$		1.01 ± 0.06
9	\mathbf{F}	4.56 ± 0.30	4.42 ± 0.06	52	${ m Te}$		2.18 ± 0.03
10	Ne	$[7.93 \pm 0.10]$	-1.12	53	Ι		1.55 ± 0.08
11	\mathbf{Na}	6.24 ± 0.04	6.27 ± 0.02	54	\mathbf{Xe}	$[2.24\pm0.06]$	-1.95
12	Mg	7.60 ± 0.04	7.53 ± 0.01	55	$\mathbf{C}\mathbf{s}$		1.08 ± 0.02
13	\mathbf{Al}	6.45 ± 0.03	6.43 ± 0.01	56	\mathbf{Ba}	2.18 ± 0.09	2.18 ± 0.03
14	Si	7.51 ± 0.03	7.51 ± 0.01	57	$_{ m La}$	1.10 ± 0.04	1.17 ± 0.02
15	P	5.41 ± 0.03	5.43 ± 0.04	58	Ce	1.58 ± 0.04	1.58 ± 0.02
16	S	7.12 ± 0.03	7.15 ± 0.02	59	\Pr	0.72 ± 0.04	0.76 ± 0.03
17	Cl	5.50 ± 0.30	5.23 ± 0.06	60	Nd	1.42 ± 0.04	1.45 ± 0.02
18	\mathbf{Ar}	$[6.40\pm0.13]$	-0.50	62	\mathbf{Sm}	0.96 ± 0.04	0.94 ± 0.02
19	\mathbf{K}	5.03 ± 0.09	5.08 ± 0.02	63	$\mathbf{E}\mathbf{u}$	0.52 ± 0.04	0.51 ± 0.02
20	\mathbf{Ca}	6.34 ± 0.04	6.29 ± 0.02	64	Gd	1.07 ± 0.04	1.05 ± 0.02
21	\mathbf{Sc}	3.15 ± 0.04	3.05 ± 0.02	65	Tb	0.30 ± 0.10	0.32 ± 0.03
22	Ti	4.95 ± 0.05	4.91 ± 0.03	66	$\mathbf{D}\mathbf{y}$	1.10 ± 0.04	1.13 ± 0.02
23	V	3.93 ± 0.08	3.96 ± 0.02	67	$_{\mathrm{Ho}}$	0.48 ± 0.11	0.47 ± 0.03
24	\mathbf{Cr}	5.64 ± 0.04	5.64 ± 0.01	68	\mathbf{Er}	0.92 ± 0.05	0.92 ± 0.02
25	Mn	5.43 ± 0.05	5.48 ± 0.01	69	Tm	0.10 ± 0.04	0.12 ± 0.03
26	Fe	7.50 ± 0.04	7.45 ± 0.01	70	$\mathbf{Y}\mathbf{b}$	0.84 ± 0.11	0.92 ± 0.02
27	Co	4.99 ± 0.07	4.87 ± 0.01	71	Lu	0.10 ± 0.09	0.09 ± 0.02
28	Ni	6.22 ± 0.04	6.20 ± 0.01	72	$\mathbf{H}\mathbf{f}$	0.85 ± 0.04	0.71 ± 0.02
29	Cu	4.19 ± 0.04	4.25 ± 0.04	73	${ m Ta}$		$\textbf{-0.12} \pm 0.04$
30	$\mathbf{Z}\mathbf{n}$	4.56 ± 0.05	4.63 ± 0.04	74	\mathbf{W}	0.85 ± 0.12	0.65 ± 0.04
31	Ga	3.04 ± 0.09	3.08 ± 0.02	75	Re		0.26 ± 0.04
32	Ge	3.65 ± 0.10	3.58 ± 0.04	76	Os	1.40 ± 0.08	1.35 ± 0.03
33	$\mathbf{A}\mathbf{s}$		2.30 ± 0.04	77	Ir	1.38 ± 0.07	1.32 ± 0.02
34	\mathbf{Se}		3.34 ± 0.03	78	Pt		1.62 ± 0.03
35	Br		2.54 ± 0.06	79	$\mathbf{A}\mathbf{u}$	0.92 ± 0.10	0.80 ± 0.04
36	Kr	$[3.25\pm0.06]$	-2.27	80	Hg		1.17 ± 0.08
37	Rb	2.52 ± 0.10	2.36 ± 0.03	81	Tl	0.90 ± 0.20	0.77 ± 0.03
38	Sr	2.87 ± 0.07	2.88 ± 0.03	82	Pb	1.75 ± 0.10	2.04 ± 0.03
39	Y	2.21 ± 0.05	2.17 ± 0.04	83	Bi		0.65 ± 0.04
40	\mathbf{Zr}	2.58 ± 0.04	2.53 ± 0.04	90	Th	0.02 ± 0.10	0.06 ± 0.03
41	Nb	1.46 ± 0.04	1.41 ± 0.04	92	U		-0.54 ± 0.03
42	Мо	1.88 ± 0.08	1.94 ± 0.04				

Asplund et al. 2009 Solar Abundances

$$= 12 + \log_{10}(X/H)$$

Elements with 12+log(X/H) > 7: H, He, C, N, O, Ne, Mg, Si, S, Fe

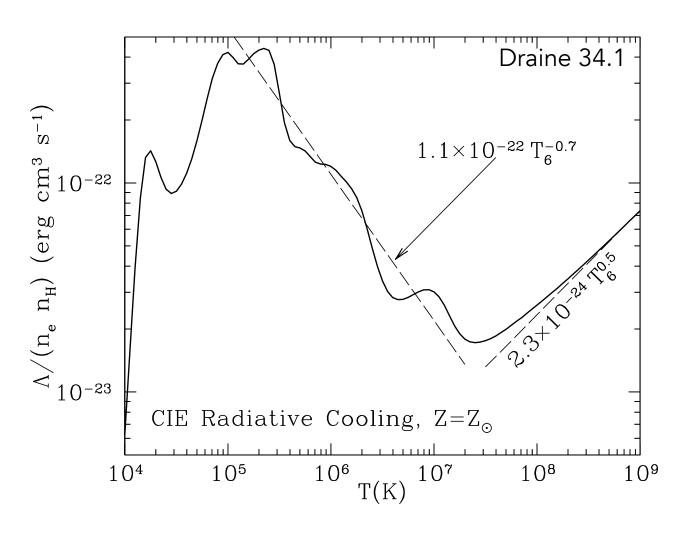
Important for ISM processes

Some notation:

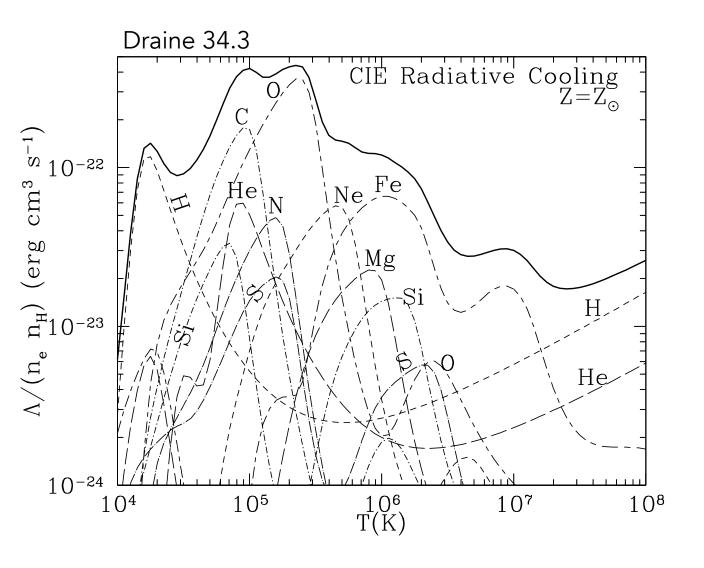
neutral: H I

singly ionized: H II

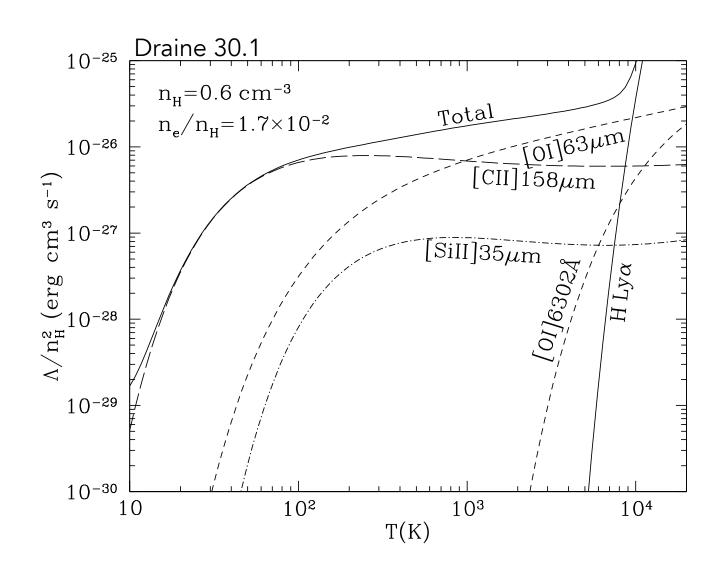
e.g. triply ionized oxygen $(O^{3+}) = O IV$

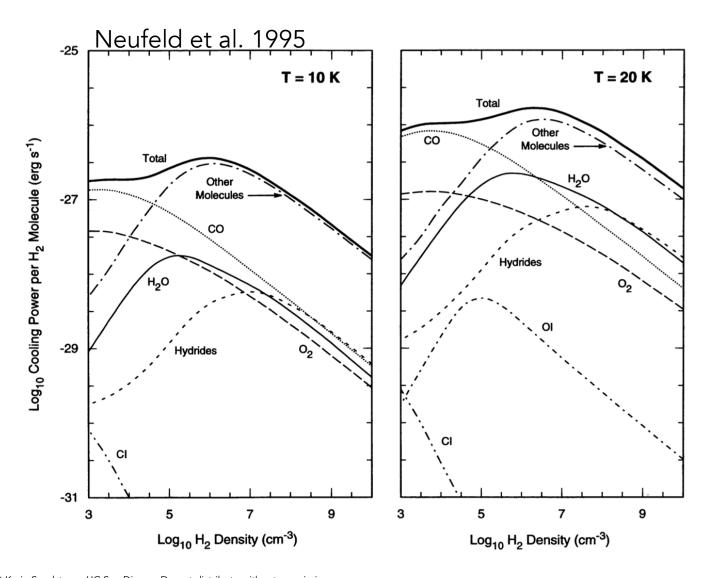

Ionization Potentials

$|\rightarrow||$ $||\rightarrow|||$ $|||\rightarrow|V$ $|V\rightarrow V$ $V\rightarrow V|$


1	н	13.598				
	He	24.587	54.416			
	Li	5.392	75.638	122.451		
	Be	9.322	18.211	153.893	217.713	
5	В	8.298	25.154	37.930	259.368	340.217
6	C	11.260	24.383	47.887	64.492	
7	N	14.534	29.601	47.448	77.472	97.888
8	0	13.618	35.116	54.934	77.412	113.896
9	F	17.422	34.970	62.707	87.138	114.240
10	Ne	21.564	40.962	63.45	97.11	126.21
11	Na	5.139	47.286	71.64	98.91	138.39
12	Mg	7.646	15.035	80.143	109.24	141.26
13	Al	5.986	18.828	28.447	119.99	153.71
14	Si	8.151	16.345	33.492	45.141	166.77
15	P	10.486	19.725	30.18	51.37	65.023
16	S	10.360	23.33	34.83	47.30	72.68
17	CI	12.967	23.81	39.61	53.46	67.8
18	Ar	15.759	27.629	40.74	59.81	75.02
19	K	4.341	31.625	45.72	60.91	82.66
20	Ca	6.113	11.871	50.908	67.10	84.41
21		6.54	12.80	24.76	73.47	91.66
22		6.82	13.58	27.491	43.266	99.22
23		6.74	14.65	29.310	46.707	65.23
24		6.766	16.50	30.96	49.1	69.3
	Mn	7.435	15.640	33.667	51.2	72.4
	Fe	7.870	16.18	30.651	54.8	75.0
27		7.86	17.06	33.50	51.3	79.5
28		7.635	18.168	35.17	54.9	75.5
29		7.726	20.292	36.83	55.2	79.9
30		9.394	17.964	39.722	59.4	82.6
31		5.999	20.51	30.71	64	
32		7.899	15.934	34.22	45.71	93.5
22	•	0.01	10 /00	20 254	** **	

Can be ionized when H is neutral.


Carbon is the most abundant element that can be ionized when H is neutral.


Ionized Gas

Ionized Gas

Neutral Gas

Molecular Gas

- Given some ion, atom or molecule what sets the spacing between energy levels?
- How likely (or how frequently) do transitions between the various levels occur?

Energy Levels of Atoms & Ions

First need to know how electrons are configured in atom/ion: Set by the quantum numbers that describe the wave-function

n = principle quantum number

 $l = \text{orbital angular momentum in units of } \hbar \text{ (0 } \leq l < n)$

 m_z = proj. of angular mom. on z axis (- $l \le m_z \le l$) e- spin = - \hbar /2 or + \hbar /2

degenerate (same energy) w/o applied B-field

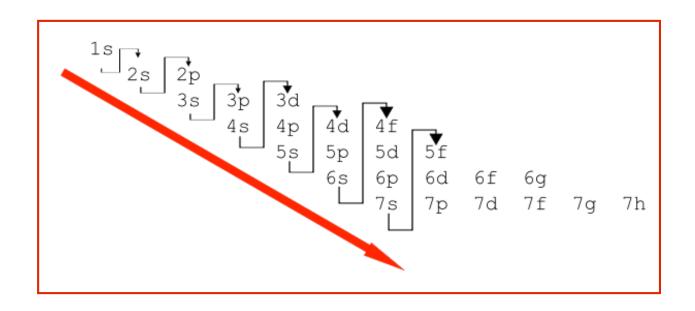
Energy Levels of Atoms & Ions

How do we arrange e- in a multi-electron atom?

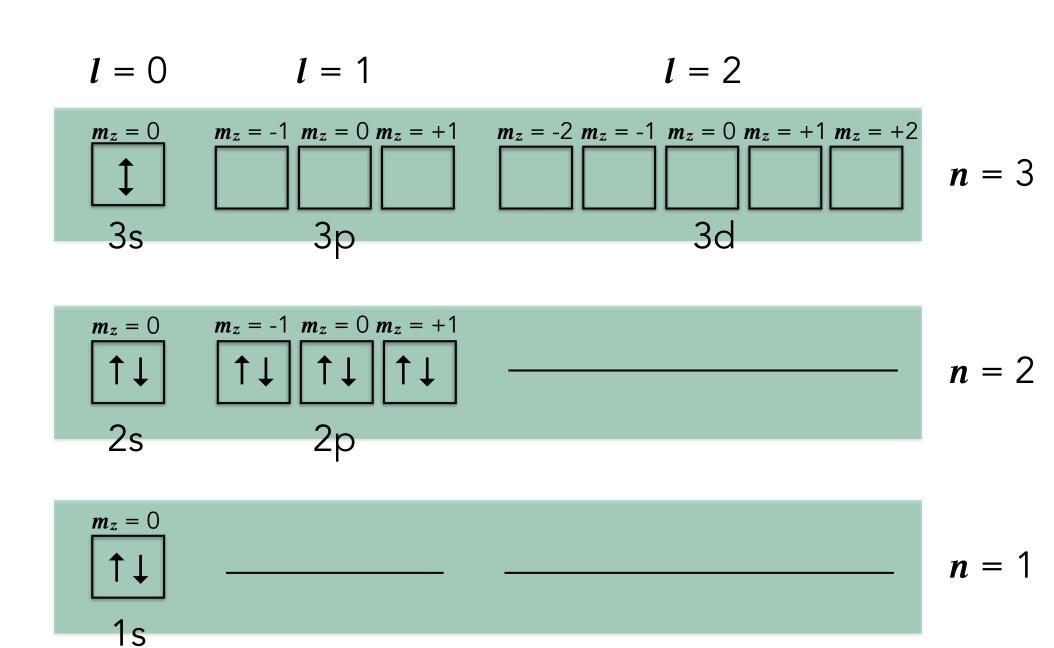
Pauli exclusion principle says:

electrons can't share the same wave-function $(n, l, m_z, spin)$

For ground state configuration: fill up "subshells" from lowest energy up


subshell = combination of nl designated

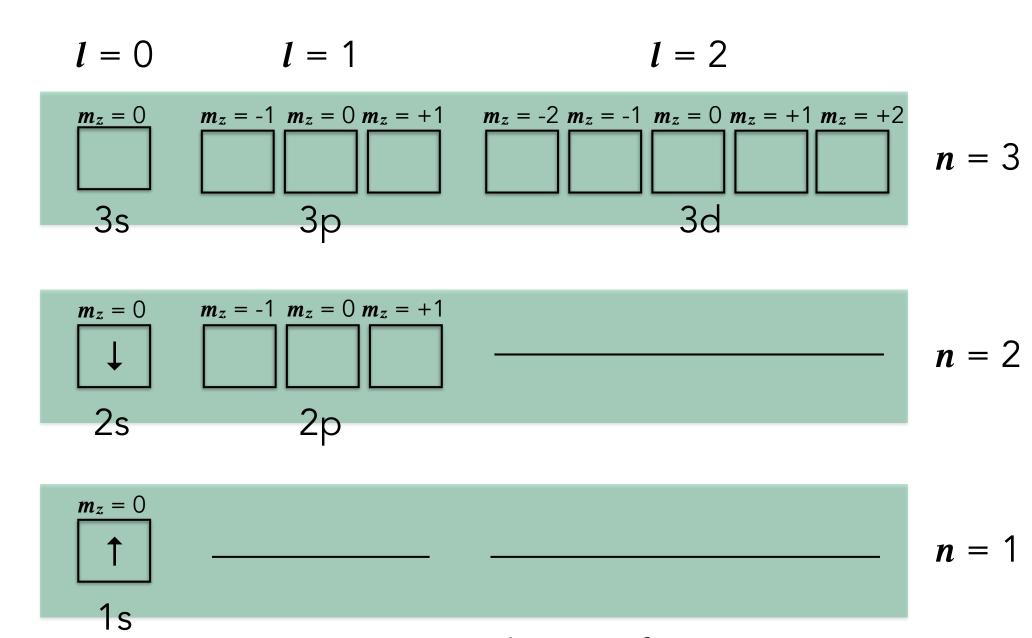
by number n and letter for l (0=s, 1=p, 2=d, 3=f, ...)


Can put 2 e- in each box: 1

 \therefore degeneracy of subshell = 2(2l+1)

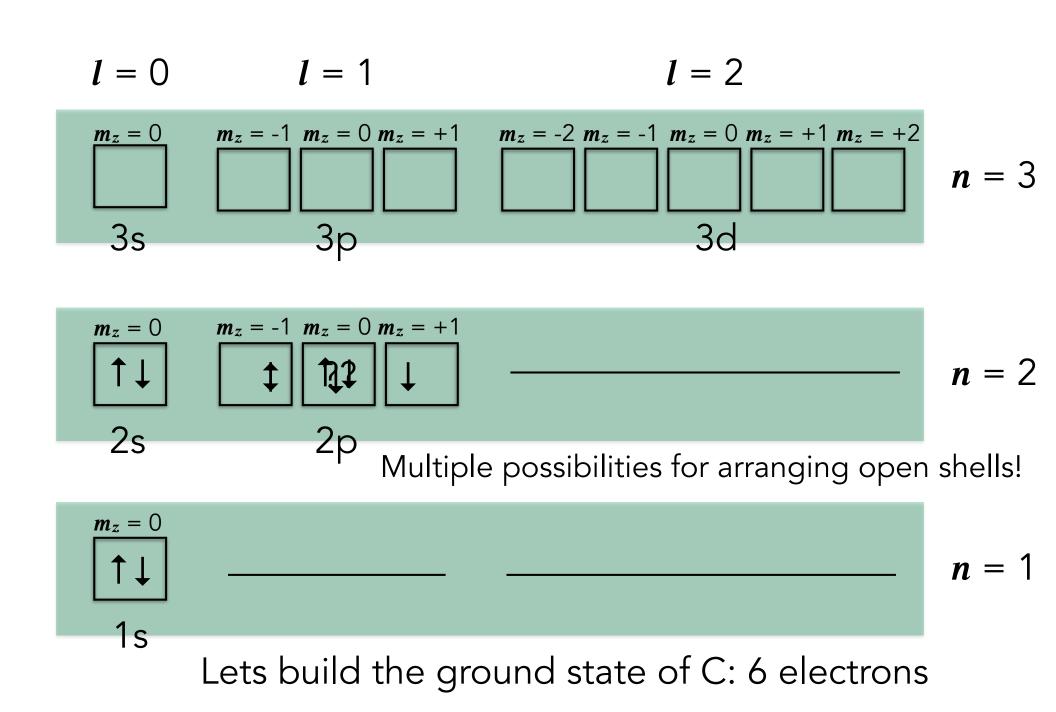
For ground state (lowest energy): Subshells are filled in order of increasing n+l, and then in order of increasing n.

Number of electrons in each subshell listed with $2p^2$


Lets build the ground state of Na: 11 electrons

 $\rightarrow 1s^2 2s^2 2p^6 3s$

Table 2.1 – Electron configuration of atoms


Flores	Electer	Crowned		Flores	Flores	C
Element	Electron configura-	Ground	<i>E,</i> [e∨]	Element	Electron	Ground
	tion	term	[ev]	}	configura- tion	term
1 H	15	$^{2}S_{1/2}$	13.598	51 Sb	$5s^2$ $5p^3$	*S,/2
2 He	1 s ²	¹S ₀	24.587	52 Te	$5s^2$ $5p^4$	³ P,
3 Li	2.5	${}^{2}S_{1/2}$	5.392	53 I	$5s^s$ $5p^s$	² P _{3/2}
4 Be	2.5 ²	1S ₀	9.322	54 Xe	$5s^2 5p^6$	¹S ₀
5 B	$2s^2 2p$	${}^{2}P_{1/2}$	8.298	55 Cs	6s	² S _{1/2}
6 C	$2s^2 2p^2$	³P₀	11.260	56 Ba	6 <i>s</i> ²	¹S ₀
7 N	$2s^2 2p^3$	4S _{3/2}	14.534	57 La	5d 6s²	$^{2}D_{3/2}$
8 O	$2s^2 2p^4$	³P,	13.618	58 Ce	4f 5d 6s2	${}^{1}G_{4}$?
9 F	$2s^2 2p^3$	${}^{2}P_{3/2}$	17.422	59 Pr	$4f^3 6s^2$	$^{4}I_{9/2}$?
10 Ne	$2s^2 2p^6$	¹S ₀	21.564	60 Nd	4f4 6s2	3/4
11 Na	3 s	${}^{2}S_{1/2}$	5.139	61 Pm	4f3 6s2	$^{4}H_{5/2}$?
12 Mg	3s2	¹S ₀	7.64 6	62 Sm	4f6 6s2	₹,
13 Al	3s² 3p	${}^{2}P_{1/2}$	5.9 86	63 Eu	457 652	S 7/2
14 Si	$3s^2 3p^2$	P_0	8.151	64 Gd	4f7 5d 6s2	° D,
15 P	$3s^2 3p^3$	4S3/2	10.486	65 Tb	4f9 6s2	6H _{15/2}
16 S	$3s^2 3p^4$	³ P ₂	10.360	66 Dy	4f10 6s2	5/ ₀ ?
17 Cl	$3s^2 3p^5$	${}^{2}P_{3/2}$	12.967	67 Ho	4511 652	4/13/2?
18 A.r	$3s^2 3p^6$	15 ₀	15.759	68 Er	4f12 6s2	$^{3}H_{\bullet}?$
19 K	45	$^{2}S_{1/2}$	4.341	69 Tm	4f13 6s2	2F2/2
20 Ca	452	1S0	6.113	70 Yb	4514 652	¹S。
21 Sc	3d 4s2	$^{2}D_{1/2}$	6.54	71 Lu	5d 6s2	$^{2}D_{1/2}$
22 Ti	$3d^2 4s^2$	³F.	6.82	72 Hf	$5d^2 + 6s^2$	3F.
23 V	$3d^3 4s^2$	4F _{3/2}	6.74	73 Ta	5d3 6s2	4F _{3/2}
24 Cr	3d5 45	' 3',	6.766	74 W	5d4 6s2	3D_0
25 Mn	3d5 4s2	6S 5/2	7.435	75 Re	5d5 6s2	·S,/2
26 Fe	3d6 4s2	$^{5}D_{4}$	7.870	76 Os	5d6 6s2	$^{5}D_{4}^{"}$
27 Co	$3d^7 4s^2$	${}^4F_{9/2}$	7.86	77 Ir	$5d^{7} 6s^{2}$	4F,/2?
28 Ni	3d* 4s2	3F.	7.635	78 Pt	5d9 6s	3D_3
29 Cu	45	$^{2}S_{1/2}$	7.726	79 Au	6 <i>s</i>	2S1/2
30 Zn	4.2	10	0 304	RO He	6.2	15

Note that in many tables "closed" shells aren't listed, e.g. 1s² 2s² 2p⁶

Excited state of He

 \rightarrow 1s 2s

 \rightarrow 1s² 2s² 2p²

© Karin Sandstrom, UC San Diego - Do not distribute without permission

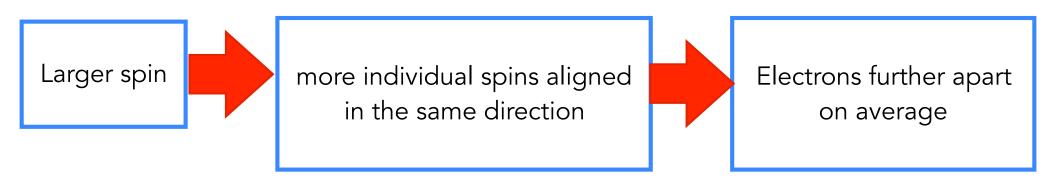
Multiple possibilities for distributing e- in unfilled subshell, lead to different overall angular momentum

 \mathbf{L} = vector sum of angular momentum

S = vector sum of spin angular momentum

J = L + S = total angular momentum

$$\mathbf{L} = \sum_{\mathrm{i}} \mathbf{l}_{\mathrm{i}}$$

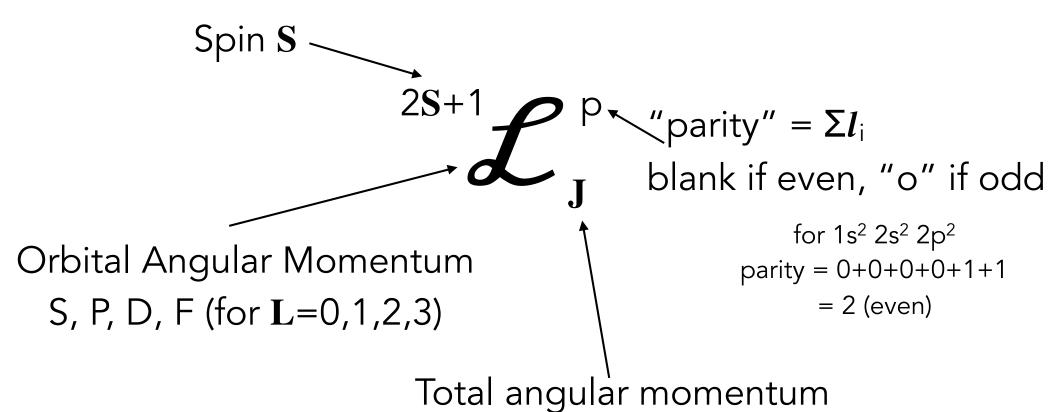

$$\mathbf{S} = \sum_i \mathbf{s}_i$$

Note that full shells and subshells do not contribute to the angular momentum: $\mathbf{J} = \mathbf{L} = \mathbf{S} = 0$

Why is this important:

Different combinations of L and S have different energies.

L-S Coupling: Total spin ${f S}$ interacts with total angular momentum ${f L}$ ("spin-orbit coupling")



Larger Spin has Lower energy (usually)

Spectroscopic Notation

The "Spectroscopic Term"

helps to keep track of the configuration of the electrons

 $\mathbf{J} = \mathbf{L} + \mathbf{S}$

 $\mathbf{L} = \text{vector sum of angular momentum}$ $\mathbf{S} = \text{vector sum of spin angular momentum}$ $\mathbf{J} = \mathbf{L} + \mathbf{S} = \text{total angular momentum}$

- z component of the angular momentum can have values between -L and L, i.e.
 (2L+1) degenerate levels
- z component of the total spin can have values between -S and S, i.e. (2S+1) degenerate levels

Each L and S has (2L+1)(2S+1)possible m_z & spin combinations. Calculating Spectroscopic Terms:

$$\mathcal{L}_{J}^{p}$$

$$\mathbf{L} = \sum_i \mathbf{l}_i \quad \mathbf{S} = \sum_i \mathbf{s}_i \quad \mathbf{J} = \mathbf{L} + \mathbf{S}$$

Configuration of 2 electrons: 1s2s

$$m_{l1}=0$$
, $m_{l2}=0$, $L=0$
 $m_{s1}=\pm\frac{1}{2}$, $m_{s2}=\pm\frac{1}{2}$, $S=0,1$
 $J=L+S$ so $J=0,1$
 $M=1$
 $M=1$

Possible Terms: ¹S₀, ³S₁

Calculating Spectroscopic Terms:

$$\mathcal{L}_{J}^{p}$$

Possible Spectroscopic Terms for 2 electrons in p (for p, recall l = 1, so L can be 0,1,2)

	L=0	L=1	L=2	
S=0	1S (1)	1P (3)	1D (5)	(2L+1)(2S+1)
S=1	3S (3)	³ P (9)	³ D (15)	= 1+3+5+3+9+1 = 36 total terms

However, not all of these work - lets see why...

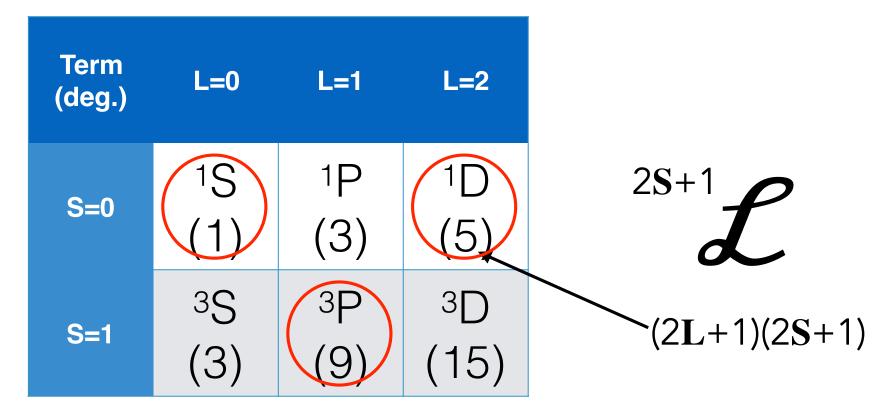
-b d

"Non-Equivalent" electrons (i.e. 2p3p, different n) all 36 combinations are allowed:

(mz, ms)	(+1, +1/2)	(0, +1/2)	(-1, +1/2)	(+1, -1/2)	(0, -1/2)	(-1, -1/2)
(+1, +1/2)	L , S = +2, +1	+1, +1	0, +1	+2, 0	+1, 0	Ο, Ο
(0, +1/2)	+1, +1	0, +1	-1, +1	+1, +1	0, 0	-1, 0
(-1, +1/2)	0, +1	-1, +1	-2, +1	0, 0	-1, 0	-2, 0
(+1, -1/2)	+2, 0	+1, 0	0, 0	+2, -1	+1, -1	0, -1
(0, -1/2)	+1, 0	Ο, Ο	-1, 0	+1, -1	0, -1	-1, -1
(-1, -1/2)	0, 0	-1, 0	-2, 0	0, -1	-1, -1	-2, -1

"Equivalent" electrons (i.e. $2p^2$, same n) only 15 combinations allowed (b.c. exclusion principle)

(mz, ms)	(+1, +1/2)	(0, +1/2)	(-1, +1/2)	(+1, -1/2)	(0, -1/2)	(-1, -1/2)
(+1, +1/2)	+2, +1	+1, +1	0, +1	+2, 0	+1, 0	0, 0
(0, +1/2)	+1, +1	0, +1	-1, +1	+1, +1	0, 0	-1, 0
(-1, +1/2)	0, +1	-1, +1	-2, +1	0, 0	-1, 0	-2, 0
(+1, -1/2)	+2, 0	+1, 0	0, 0	+2, -1	+1, -1	0, -1
(0, -1/2)	+1, 0	0, 0	-1, 0	+1, -1	0, -1	-1, -1
(-1, -1/2)	0, 0	-1, 0	-2, 0	0, -1	-1, -1	-2, -1


Possible Terms for 2 electrons in p

Term (deg.)	L=0	L=1	L=2	
S=0	1S (1)	¹ P (3)	1D (5)	2S+1
S=1	3S (3)	³ P (9)	3D (15)	(2L+1)(2S+1)

³D has L = 2 (m_z = 2, 1, 0, -1, -2) and S=1 (m_s = 1, 0, -1)

 $m_z = \pm 2$, $m_s = \pm 1$ not in the table so ³D cannot be a valid term.

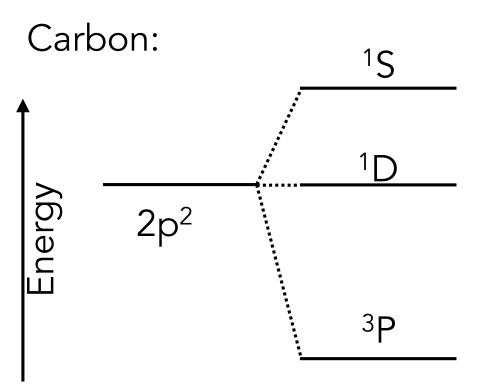
Possible Terms for 2 equivalent electrons in p

Only 15 combinations allowed - some terms don't work when electrons are equivalent

For 2 electrons in p, possible terms are ¹S, ³P, ¹D

It gets complicated & tedious to do this for more electrons or for excited states. Just look it up!

Table 7.2 Terms arising from some configurations of non-equivalent and equivalent electrons

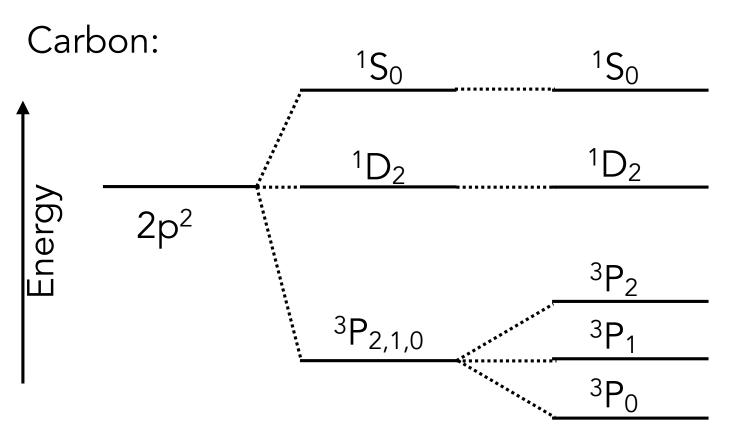

Non	-equivalent electrons	Equivalent electrons		
Configuration	Terms	Configuration	Terms ^a	
s^1s^1	$^{1,3}S$	p^2	${}^{1}S, {}^{3}P, {}^{1}D$	
s^1p^1	$^{1,3}P$	p^3	${}^{4}S, {}^{2}P, {}^{2}D$	
s^1d^1	$^{1,3}D$	d^2	${}^{1}S, {}^{3}P, {}^{1}D, {}^{3}F, {}^{1}G$	
$s^{1}f^{1}$	$^{1,3}F$	d^3	$^{2}P,^{4}P,^{2}D(2),^{2}F,$	
p^1p^1	$^{1,3}S$, $^{1,3}P$, $^{1,3}D$		${}^{4}F, {}^{2}G, {}^{2}H$	
p^1d^1	$^{1,3}P$, $^{1,3}D$, $^{1,3}F$	d^4	${}^{1}S(2), {}^{3}P(2), {}^{1}D(2),$	
$p^{1}f^{1}$	$^{1,3}D,^{1,3}F,^{1,3}G$		$^{3}D, ^{5}D, ^{1}F, ^{3}F(2),$	
d^1d^1	$^{1,3}S$, $^{1,3}P$, $^{1,3}D$, $^{1,3}F$, $^{1,3}G$		$^{1}G(2), ^{3}G, ^{3}H, ^{1}I$	
d^1f^1	$^{1,3}P$, $^{1,3}D$, $^{1,3}F$, $^{1,3}G$, $^{1,3}H$	d^5	${}^{2}S$, ${}^{6}S$, ${}^{2}P$, ${}^{4}P$, ${}^{2}D(3)$,	
f^1f^1	$^{1,3}S$, $^{1,3}P$, $^{1,3}D$, $^{1,3}F$, $^{1,3}G$,		$^{4}D,^{2}F(2),^{4}F,^{2}G(2)$	
<i>y y</i>	$^{1,3}H$, $^{1,3}I$		${}^{4}G, {}^{2}H, {}^{2}I$	

^a The numbers in brackets indicate that a particular term occurs more than once.

from Modern Spectroscopy by Hollas

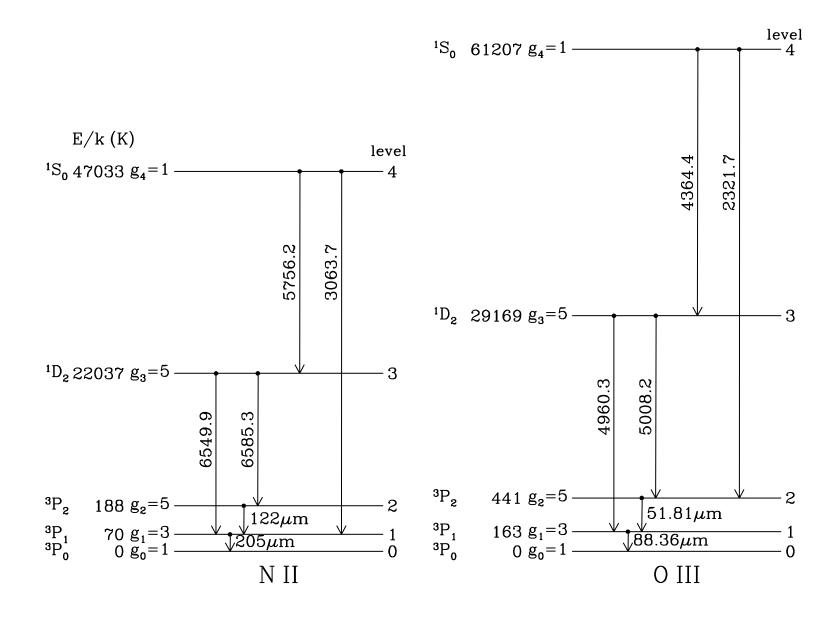
Energy Levels ←→ Terms

$$\mathcal{L}_{J}^{p}$$

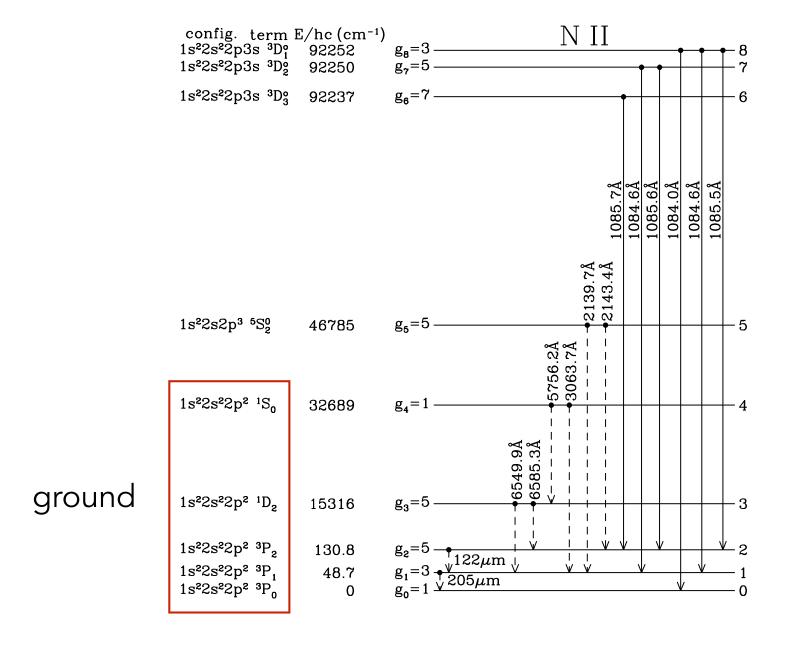


"Hund's Rules"

- Terms w/larger spin generally have lower energy.
- For terms with given configuration and spin, larger L has lower energy.
- Higher J = higher energy if shell is less than half full (opposite otherwise).


Energy Levels ←→ Terms

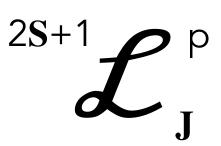
$$\mathcal{L}_{J}^{p}$$

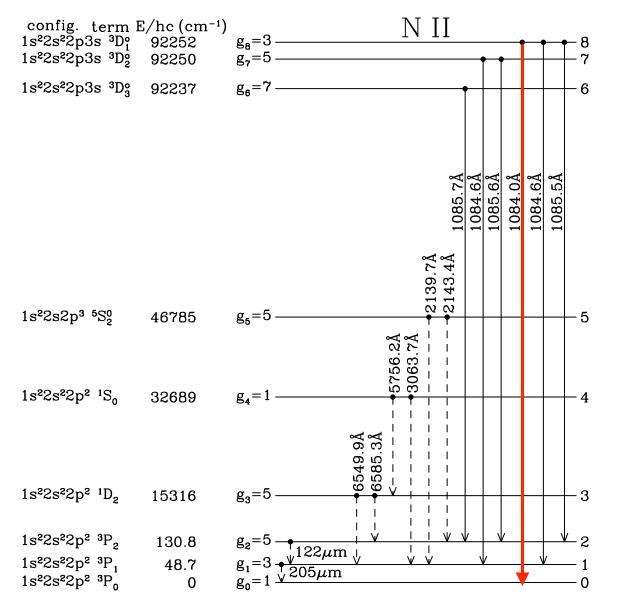


3) Higher J =
higher energy
if shell is less
than half full
(opposite
otherwise).

Other examples of np² ground state configurations

First nine energy levels for 6 electron config, eg NII

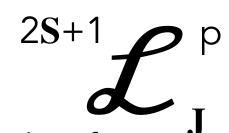


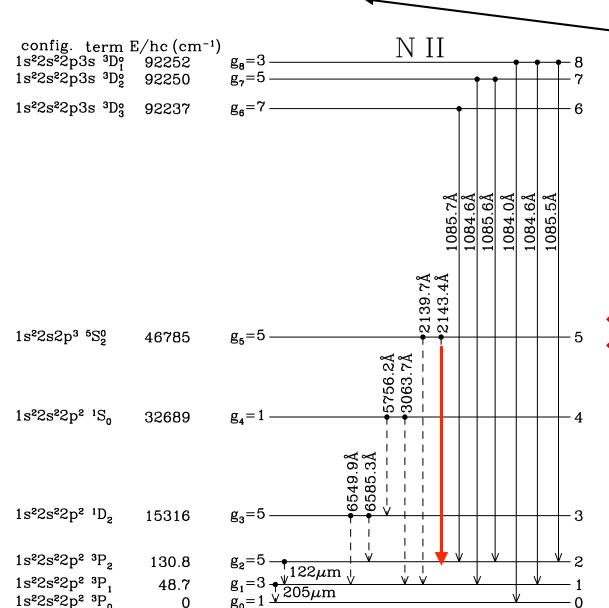

Selection Rules for Transitions

We can now figure out the energy levels, what about the transitions between them?

Type of Transition	Mechanism	Selection Rules		
"allowed"	electric dipole	 Parity must change ΔL = 0, ±1 ΔJ = 0, ±1 but not J=0→0 only one e- wavefunction <i>nl</i> changes with Δ<i>l</i> = ±1 ΔS = 0 		
"semi- forbidden" or "intersystem"	electric dipole but with ΔS ≠ 0 from configuration mixing due to relativistic effects	same as "allowed" except violates #5		
"forbidden"	magnetic dipole or electric quadrupole	violates at least one other selection rule other than #5		

NII 1084.0 Å ${}^{3}P_{0} - {}^{3}D_{1}{}^{\circ}$



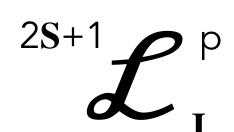


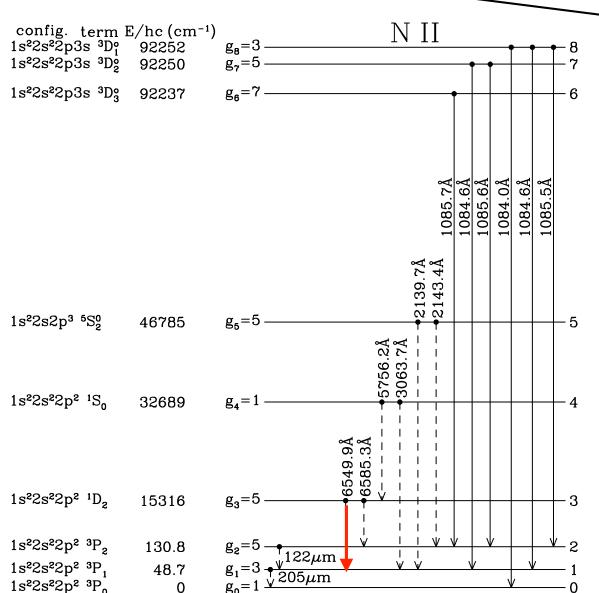
- √1) Parity must change
- \checkmark 2) $\Delta J = 0$, ±1, but $J=0 \rightarrow 0$ is forbidden
- $\sqrt{3}$) $\Delta S = 0$
- ✓4) $\Delta L = 0, \pm 1, \text{ but } L=0 \rightarrow 0$ is forbidden
- $\sqrt{5}$) if one e-then $\Delta l = 0$

$$A_{ul} = 2.18 \times 10^8 \text{ s}^{-1}$$

 $1/A_{ul} = 4.6 \text{ ns}$

N II] 2143.4 Å $^{5}\text{S}_{2}^{\circ}$ - $^{3}\text{P}_{2}$


single bracket for "semi-forbidden"


- √1) Parity must change
- $\sqrt{2}$) $\Delta J = 0$, ±1, but $J=0 \rightarrow 0$ is forbidden
- $\Delta S = 0$
 - ✓4) $\Delta L = 0, \pm 1, \text{ but } L=0 \rightarrow 0$ is forbidden
 - $\sqrt{5}$) if one e-then $\Delta l = 0$

$$A_{ul} = 1.27 \times 10^2 \text{ s}^{-1}$$

$$1/A_{ul} = 7.9 \text{ ms}$$

[N II] 6549.9 $\text{\AA}^{1}\text{D}_{2}$ - $^{3}\text{P}_{1}$

double bracket for "forbidden"

- 1) Parity must change
 - ✓2) $\Delta J = 0$, ±1, but $J=0\rightarrow0$ is forbidden
- $\Delta S = 0$
 - ✓4) $\Delta L = 0, \pm 1, \text{ but } L=0 \rightarrow 0$ is forbidden
 - (5) if one e-then $\Delta l = 0$

$$A_{ul} = 9.2 \times 10^{-4} \text{ s}^{-1}$$

 $1/A_{ul} \sim 20 \text{ min}$

Reminder: if we know the Einstein A value, we know all of the other Einstein B values too, including the rate coefficient for absorption (B_{lu})

$$B_{lu} = (g_u/g_l)B_{ul}$$

$$B_{lu} \propto A_{ul}$$

$$B_{ul} = (c^3/(8\pi h v^3)) A_{ul}$$

When Einstein A value is very small, low coefficient for absorption.

Forbidden transitions are very important in astronomy!

Collisions populate the levels of the ground state

There is a low probability for transitions B_{lu} so the line is generally optically thin

When there is a radiative transition, that energy escapes! Very important for cooling!