Physics 224 The Interstellar Medium

Lecture #5

 $\ensuremath{\mathbb{C}}$ Karin Sandstrom, UC San Diego - Do not distribute without permission

- Part I: Energy Levels & Transitions in Atoms/ Molecules
- Part II: Radiative Transfer

Type of Transition	Mechanism	Selection Rules	
"allowed"	electric dipole	 Parity must change ΔL = 0, ±1 ΔJ = 0, ±1 but not J=0→0 only one e- wavefunction <i>nl</i> changes with Δ<i>l</i> = ±1 ΔS = 0 	
"semi- forbidden" or "intersystem"	electric dipole but with ΔS ≠ 0 from configuration mixing due to relativistic effects	same as "allowed" except violates #5	
"forbidden"	magnetic dipole or electric quadrupole	violates at least one other selection rule other than #5	

Fine and Hyperfine Structure Transitions

-fine structure transitions (transitions within a term, e.g. ${}^{2}P_{3/2}$ 158µm line of [CII] within ${}^{2}P$ term)

-hyperfine structure transitions (transitions within a given level of a term caused by splitting due to interaction of electron & nuclear spin, e.g. HI 21 cm spin-flip transition)

Forbidden transitions are very important in astronomy!

Collisions populate the levels of the ground state

There is a low probability (B_{lu}) for forbidden transitions so the line is generally optically thin

When there is a radiative transition, that energy escapes! Very important for cooling!

Ionization Potentials

 $|\rightarrow|| \quad ||\rightarrow||| \quad |||\rightarrow|\vee \quad |\vee\rightarrow\vee \quad \vee\rightarrow\vee|$

1	н	13.598				
2	He	24.587	54.416			
3	Li	5.392	75.638	122.451		
4	Be	9.322	18.211	153.893	217.713	
5	В	8.298	25.154	37.930	259.368	340.217
6	С	11.260	24.383	47.887	64.492	392.077
7	N	14.534	29.601	47.448	77.472	97.888
8	0	13.618	35.116	54.934	77.412	113.896
9	F	17.422	34.970	62.707	87.138	114.240
10	Ne	21.564	40.962	63.45	97.11	126.21
11	Na	5.139	47.286	71.64	98.91	138.39
12	Mg	7.646	15.035	80.143	109.24	141.26
13	AI	5.986	18.828	28.447	119.99	153.71
14	Si	8.151	16.345	33.492	45.141	166.77
15	P	10.486	19.725	30.18	51.37	65.023
16	S	10.360	23.33	34.83	47.30	72.68
17	Cl	12.967	23.81	39.61	53.46	67.8
18	Ar	15.759	27.629	40.74	59.81	75.02
19	K	4.341	31.625	45.72	60.91	82.66
20	Ca	6.113	11.871	50.908	67.10	84.41
21	Sc	6.54	12.80	24.76	73.47	91.66
22	Ti	6.82	13.58	27.491	43.266	99.22
23	v	6.74	14.65	29.310	46.707	65.23
24	Cr	6.766	16.50	30.96	49.1	69.3
25	Mn	7.435	15.640	33.667	51.2	72.4
26	Fe	7.870	16.18	30.651	54.8	75.0
27	Co	7.86	17.06	33.50	51.3	79.5
28	Ni	7.635	18.168	35.17	54.9	75.5
29	Cu	7.726	20.292	36.83	55.2	79.9
30	Zn	9.394	17.964	39.722	59.4	82.6
31	Ga	5.999	20.51	30.71	64	
32	Ge	7.899	15.934	34.22	45.71	93.5
22		0.01	10 100		00.00	44.44

Can be ionized when H is neutral.

Carbon is the most abundant element that can be ionized when H is neutral.

	Notes	Important Lines
Не	→ He II at 24.59 eV, → He III at 54.4 eV, H II regions can have both He I and He II, rarely He III	optical
С	C II can exist in regions with neutral H, fine structure transition in ground state ${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$, requires 91 K to excite	[CII] 158 µm
Ν	N II in regions with ionized H, fine structure transitions in ³ P _{2,1,0} ground state easy to excite	[NII] far-IR and optical lines
0	O ionization potential very close to H, charge exchange reactions maintain O+/O and H+/H balance	[O I] [OIII] far-IR, [OII], [OIII] opt
Mg	7.6 eV ionization potential, mostly in Mg II no fine struct most Mg is depleted into dust grains	Mg II in UV
Si	8.1 eV ionization potential, mostly in Si II most Si is depleted into dust grains	[Si II] 35 µm
S	10.4 eV ionization potential, mostly in S II, not a major dust constituent, but no fine structure in ${}^{4}S_{3/2}$ ground state of S II	
Fe	almost entirely in dust (only ~few % in gas)	

	Notes	Important Lines
Не	→ He II at 24.59 eV, → He III at 54.4 eV, H II regions can have both He I and He II, rarely He III	optical
С	C II can exist in regions with neutral H, fine structure transition in ground state ${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$, requires 91 K to excite	[CII] 158 µm
Ν	N II in regions with ionized H, fine structure transitions in ³ P _{2,1,0} ground state easy to excite	[NII] far-IR and optical lines
0	O ionization potential very close to H, charge exchange reactions maintain O+/O and H+/H balance	[O I] [OIII] far-IR, [OII], [OIII] opt
Mg	7.6 eV ionization potential, mostly in Mg II no fine struct most Mg is depleted into dust grains	Mg II in UV
Si	8.1 eV ionization potential, mostly in Si II most Si is depleted into dust grains	[Si II] 35 µm
S	10.4 eV ionization potential, mostly in S II, not a major dust constituent, but no fine structure in ${}^{4}S_{3/2}$ ground state of S II	
Fe	almost entirely in dust (only ~few % in gas)	

[©] Karin Sandstrom, UC San Diego - Do not distribute without permission

	Notes	Important Lines
Не	→ He II at 24.59 eV, → He III at 54.4 eV, H II regions can have both He I and He II, rarely He III	optical
С	C II can exist in regions with neutral H, fine structure transition in ground state ${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$, requires 91 K to excite	[CII] 158 µm
Ν	N II in regions with ionized H, fine structure transitions in ³ P _{2,1,0} ground state easy to excite	[NII] far-IR and optical lines
0	O ionization potential very close to H, charge exchange reactions maintain O+/O and H+/H balance	[O I] [OIII] far-IR, [OII], [OIII] opt
Mg	7.6 eV ionization potential, mostly in Mg II no fine struct most Mg is depleted into dust grains	Mg II in UV
Si	8.1 eV ionization potential, mostly in Si II most Si is depleted into dust grains	[Si II] 35 µm
S	10.4 eV ionization potential, mostly in S II, not a major dust constituent, but no fine structure in ${}^{4}S_{3/2}$ ground state of S II	
Fe	almost entirely in dust (only ~few % in gas)	

	Notes	Important Lines
Не	→ He II at 24.59 eV, → He III at 54.4 eV, H II regions can have both He I and He II, rarely He III	optical
С	C II can exist in regions with neutral H, fine structure transition in ground state ${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$, requires 91 K to excite	[CII] 158 µm
Ν	N II in regions with ionized H, fine structure transitions in ³ P _{2,1,0} ground state easy to excite	[NII] far-IR and optical lines
0	O ionization potential very close to H, charge exchange reactions maintain O+/O and H+/H balance	[O I] [OIII] far-IR, [OII], [OIII] opt
Mg	7.6 eV ionization potential, mostly in Mg II no fine struct most Mg is depleted into dust grains	Mg II in UV
Si	8.1 eV ionization potential, mostly in Si II most Si is depleted into dust grains	[Si II] 35 µm
S	10.4 eV ionization potential, mostly in S II, not a major dust constituent, but no fine structure in ${}^{4}S_{3/2}$ ground state of S II	
Fe	almost entirely in dust (only ~few % in gas)	

$$---(13.6 \text{ eV})/\text{hc} = 109692 \text{ cm}^{-1} - -$$

	Notes	Important Lines
Не	→ He II at 24.59 eV, → He III at 54.4 eV, H II regions can have both He I and He II, rarely He III	optical
С	C II can exist in regions with neutral H, fine structure transition in ground state ${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$, requires 91 K to excite	[CII] 158 µm
Ν	N II in regions with ionized H, fine structure transitions in ³ P _{2,1,0} ground state easy to excite	[NII] far-IR and optical lines
0	O ionization potential very close to H, charge exchange reactions maintain O+/O and H+/H balance	[O I] [OIII] far-IR, [OII], [OIII] opt
Mg	7.6 eV ionization potential, mostly in Mg II no fine struct most Mg is depleted into dust grains	Mg II in UV
Si	8.1 eV ionization potential, mostly in Si II most Si is depleted into dust grains	[Si II] 35 µm
S	10.4 eV ionization potential, mostly in S II, not a major dust constituent, but no fine structure in ${}^{4}S_{3/2}$ ground state of S II	
Fe	almost entirely in dust (only ~few % in gas)	

	Notes	Important Lines
Не	→ He II at 24.59 eV, → He III at 54.4 eV, H II regions can have both He I and He II, rarely He III	optical
С	C II can exist in regions with neutral H, fine structure transition in ground state ${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$, requires 91 K to excite	[CII] 158 µm
Ν	N II in regions with ionized H, fine structure transitions in ³ P _{2,1,0} ground state easy to excite	[NII] far-IR and optical lines
0	O ionization potential very close to H, charge exchange reactions maintain O+/O and H+/H balance	[O I] [OIII] far-IR, [OII], [OIII] opt
Mg	7.6 eV ionization potential, mostly in Mg II no fine struct most Mg is depleted into dust grains	Mg II in UV
Si	8.1 eV ionization potential, mostly in Si II most Si is depleted into dust grains	[Si II] 35 µm
S	10.4 eV ionization potential, mostly in S II, not a major dust constituent, but no fine structure in ${}^{4}S_{3/2}$ ground state of S II	
Fe	almost entirely in dust (only ~few % in gas)	

Emission lines from ions, atoms & molecules are critical for cooling ISM gas

Neutral Gas

Order of Magnitude Molecular Energy Levels

Cover diatomic molecules, read Draine ch 5 for more detailed info.

1) Electronic Transitions of e-

Order of Magnitude Molecular Energy Levels

Cover diatomic molecules, read Draine ch 5 for more detailed info.

1) Electronic Transitions of e-

2) Rotational Transitions

Order of Magnitude Molecular Energy Levels

Cover diatomic molecules, read Draine ch 5 for more detailed info.

1) Electronic Transitions of e-

2) Rotational Transitions

3) Vibrational Transitions

Typical energies

Electrons move much more quickly than nuclei so for rotation/vibration calculations we can average over the electron transitions (Born-Oppenheimer approximation)

Can be approximated as a simple harmonic oscillator around R₀

> Energy R_0 Internuclear Separation

Potential energy: $V(r) = V(R_0) + 1/2 \text{ k} (r - R_0)^2$

> k = "spring constant" related to molecular bond

Fundamental Frequency of oscillator: $\omega = (k/m_r)^2$

 $m_r = m_1 m_2 / (m_1 + m_2)$

Vibrational Energy Levels: $E_{vib} = \hbar \omega (v + 1/2)$

> v = vibrational quantum number

Rotational Transitions

Moment of intertia: $I = m_r r_n^2$

Rotational Energy Levels: $E_{rot} = \frac{J(J+1)\hbar^2}{2m_r r_n^2}$

J = rotational quantum number

reduced mass: $m_r = m_1 m_2/(m_1 + m_2)$

Rotational Transitions

Moment of intertia: $I = m_r r_n^2$

Rotational Energy Levels: $E_{rot} = \frac{J(J+1)\hbar^2}{2m_r r_n^2}$

J = rotational quantum number

 $= 2.1 \times 10^{-3} (m_H/m_r) (1 \text{ Å}/r_n)^2 \text{ eV}$

Define
$$B_v = \frac{\hbar^2}{2m_r r_n^2}$$

"rotational constant"

reduced mass:

 $m_r = m_1 m_2 / (m_1 + m_2)$

© Karin Sandstrom, UC San Diego - Do not distribute without permission

H₂ Molecule

Additional wrinkle for H₂: protons, like electrons, can't share same quantum state

If total proton spin is 1, rotational number J must be even. -> "para-H₂" J=0,2,4...

If total proton spin is 0 rotational number J must be odd. -> "ortho-H₂" J=1,3,5...

Only $\Delta J = 0$, ±2 are possible to stay para-para or ortho-ortho

Radiative Transfer

Motions of individual particles

On scales » mean free path for collisions Fluid dynamics Propagation of individual photons

On scales ≫ λ ↓ Radiative Transfer

Transport Phenomena: <u>https://en.wikipedia.org/wiki/Transport_phenomena</u>