Physics 224 The Interstellar Medium

Lecture #8

- Part I: Few last points on the "curve of growth"
- Part II: Ionization Processes
- Part III: Recombination Processes

where line profile is:

$$\phi_{\nu} = \frac{1}{\sqrt{2\pi\sigma_{v}^{2}}} \int_{-\infty}^{\infty} e^{-v^{2}/2\sigma_{v}^{2}} \frac{4\gamma_{u\ell}}{16\pi^{2}(\nu - (1 - v/c)\nu_{u\ell})^{2} + \gamma_{u\ell}^{2}} dv_{\ell}$$

*note no analytic formula for solution of integral

as optical depth at line center becomes >1, $\, I_{ u,0}/I_0 ightarrow 0$

as optical depth at line center becomes >1, $\, I_{ u,0}/I_0 ightarrow 0$

as optical depth at line center becomes >1, $\, I_{ u,0}/I_0 ightarrow 0$

as optical depth at line center becomes >1, $\, I_{ u,0}/I_0 ightarrow 0$

eventually "damping wings" also get close to optical depth ~1

eventually "damping wings" also get close to optical depth ~1

Absorption Lines

"Linear" $W \propto N$ $\tau_o \ll 1$

"Flat" wave $W \propto b \sqrt{\ln(N/b)}$ $10 \leq \tau_o \leq 10^3$ or "Logarithmic"

"Damped" $W \propto \sqrt{N}$ $\tau_o \geq 10^4$

$$au_o = rac{\pi^{1/2}e^2}{mc}rac{\lambda}{b}Nf$$
 optical depth at line center

Summary of Opt/UV Absorption Lines

- E_{ul} is big, don't worry about stimulated emission, most in ground state.
- Line profile is Voigt (convolution of Gaussian with natural broadening)
- In low optical depth limit, only the Gaussian part matters, EW (equivalent width) is proportional to N (column density).
- Once line center saturates, EW has a "flat" dependence on N (i.e. sqrt(log(N))). Bad regime for measuring N!
- At very high optical depth, Lorentzian wings are important and EW depends on sqrt(N), can measure N from EW again.

Ionization Processes

Ionization Processes

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Ionization Processes

Ionization Processes

Cross section can be determined analytically for Hydrogen (and "hydrogenic" ions - those with 1 e- remaining)

when $hv > 13.6 Z^2 eV$ $\sigma_{\rm pi}(\nu) = \sigma_0 \left(\frac{Z^2 I_{\rm H}}{h\nu}\right)^4 \frac{e^{4-(4 \tan^{-1} x)/x}}{1 - e^{-2\pi/x}}$ where: $x = \sqrt{\frac{h\nu}{Z^2 I_{\rm H}}} - 1$

and "cross section at threshold" is

$$\sigma_0 = \frac{2^9 \pi}{3e^4} Z^{-2} \alpha \pi a_0^2 = 6.304 \times 10^{-18} Z^{-2} \text{ cm}^{-2}$$

~0

Cross section can be determined analytically for Hydrogen (and "hydrogenic" ions - those with 1 e- remaining)

when $hv > 13.6 Z^2 eV$ $\sigma_{\rm pi}(\nu) = \sigma_0 \left(\frac{Z^2 I_{\rm H}}{h\nu}\right)^4 \frac{e^{4-(4 \tan^{-1} x)/x}}{1 - e^{-2\pi/x}}$ where: $x = \sqrt{\frac{h\nu}{Z^2 I_{\rm H}}} - 1$

and "cross section at threshold" is

$$\sigma_0 = \frac{2^9 \pi}{3e^4} Z^{-2} \alpha \pi a_0^2 = 6.304 \times 10^{-18} Z^{-2} \text{ cm}^{-2}$$

~0

Cross section can be determined analytically for Hydrogen (and "hydrogenic" ions - those with 1 e- remaining)

when $hv > 13.6 Z^2 eV$ $\sigma_{\rm pi}(\nu) = \sigma_0 \left(\frac{Z^2 I_{\rm H}}{h\nu}\right)^4 \frac{e^{4-(4 \tan^{-1} x)/x}}{1 - e^{-2\pi/x}}$ where: $x = \sqrt{\frac{h\nu}{Z^2 I_{\rm H}}} - 1$

and "cross section at threshold" is

$$\sigma_0 = \frac{2^9 \pi}{3e^4} Z^{-2} \alpha \pi a_0^2 = 6.304 \times 10^{-18} Z^{-2} \text{ cm}^{-2}$$

~0

Cross section complexity increases with multiple electrons.

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Cross section complexity increases with multiple electrons.

"absorption edge" due to K shell (the 1s shell)

at binding energy of K shell cross section increases sharply

[©] Karin Sandstrom, UC San Diego - Do not distribute without permission

<u>Note:</u>

cross section of C and O and other metals far exceeds H at high energy

Even though they are less abundant, <u>metals dominate</u> <u>PI rate of gas at</u> <u>high energies.</u>

<u>Note:</u>

cross section of C and O and other metals far exceeds H at high energy

Even though they are less abundant, <u>metals dominate</u> <u>PI rate of gas at</u> <u>high energies.</u>

rate per volume ~ $n_{atom} n_{collider} \sigma c$

rate per volume ~ $n_{atom} n_{collider} \sigma c$

ζpi = photoionization rate

rate per volume ~ $n_{atom} n_{collider} \sigma c$

ζpi = photoionization rate

rate per volume ~ $n_{atom} n_{collider} \sigma c$

ζpi = photoionization rate

$$\zeta_{pi} = \int_{\nu_1}^{\infty} \sigma_{pi}(\nu) \ c \left(\frac{u_{\nu}}{h\nu}\right) d\nu$$
 minimum energy for ionization number density of photons

http://hyperphysics.phy-astr.gsu.edu/hbase/atomic/auger.html

Ionization Processes

Ionization Processes

Secondary Ionizations

 $E_{pe} = h\nu - I_s$

Energy of ejected photoelectron

difference between photon energy and ionization potential

For x-ray ionization E_{pe} can be big! May go on to ionize other atoms/ions in the gas.

Secondary ionization rate depends on $E_{\rm pe}$ and ionization state of the gas.

Part II: Ionization Processes

$$k_{ci} = \int_{I}^{\infty} \sigma_{ci}(E) \ v \ f(E) dE$$

integral of cross section over Maxwellian velocity distribution

Collisional Ionization

At higher E, cross section ~ 1/E (can show this from the impact approx from Lecture 2)

Part II: Ionization Processes

Cosmic Ray Ionization

Cosmic ray energy flux is dominated by protons.

$$\xi_{\rm CR} = 4\pi \int_{E_{\rm min}}^{\infty} \sigma_{\rm ci}(E) E \frac{dF}{dE} \cdot \frac{dE}{E}$$

Similar to before but velocity distribution is <u>not Maxwellian</u>

Big uncertainties in CR flux at low energies due to solar wind.

Cosmic Ray Ionization

CR ionization is very important in dense gas, where extinction by dust and other absorption has blocked most photons.

Will come back to this in discussing molecular clouds!

Part III: Recombination Processes

Part III: Recombination Processes

Part III: Recombination Processes

 $E_{photon} = I_{nl} + E_{kinetic}$

 I_{nl} = ionization potential from nl

Given photoionization cross section from before, we can use detailed balance to work out radiative recombination cross section.

Milne Relation:

$$\sigma_{\rm rr}(E) = \frac{g_{\ell}}{g_u} \frac{(I_{X,u\ell} + E)^2}{Em_e c^2} \sigma_{\rm pi}(h\nu = I_{X,u\ell} + E).$$

$$X^+_{\mathcal{U}} + e^- \to X_{\mathcal{C}} + h\nu_{\mathcal{C}}$$

Energy not to scale

Radiative Recombination $M = I_{nl} + E_{kinetic}$

Hydrogen

Energy not to scale

1s ——

Energy not to scale

Photon can ionize another H atom immediately if there is enough H around!

"Case A": optically thin to ionizing radiation, every ionizing photon from a recombination can escape good approx for hot, collisionally ionized gas

"Case B": Optically thick to ionizing radiation, recombinations to n=1 do not reduce ionization state of gas

good approx for "HII regions" = photoionized nebulae around young, massive stars

"Case A": optically thin to ionizing radiation, every ionizing photon from a recombination can escape

$$\alpha_A(T) = \sum_{n=1}^{\infty} \sum_{\ell=0}^{n-1} \alpha_{n\ell}(T)$$

total recombination rate = sum of recombination rates to all levels

"Case B": Optically thick to ionizing radiation, recombinations to n=1 do not reduce ionization state of gas

$$\alpha_B(T) = \sum_{n=2}^{\infty} \sum_{\ell=0}^{n-1} \alpha_{n\ell}(T) = \alpha_A(T) - \alpha_{1s}(T) \qquad \text{same but 1s rate is omitted}$$

For all but the highest n levels, collisions are much slower than radiative transitions -> recombination produces a characteristic spectrum of Hydrogen emission lines.

allowed radiative decays for: n > n' and $l - l' = \pm 1$

Einstein A coefficients + selection rules -> "branching ratios"

For Case A this is straightforward.
Radiative Recombination

For Case B, need to recognize that cross section for Lyman transitions is big, bigger than even photoionization cross section.

$$ext{for example:} ag{T_{Ly\alpha}} = 8.0 imes 10^4 \left(rac{15 ext{ km s}^{-1}}{b}
ight) au_{ ext{LyC}}$$

Radiative Recombination

Lyman photons will be absorbed immediately. "resonantly scattered" with small changes in freq until a non-Lyman transition occurs

Radiative Recombination

Case B: rates for Lyman transitions -> 0 distributed instead among other transitions

Other Recombination Processes

- Dielectronic: capture of incoming electron excites one of the other bound electrons -> 2 excited e-
- Dissociative: molecular ion captures e-, dissociates
- Charge exchange: one important reaction is $O^+ + H < -> O + H^+$
- Neutralization by dust grains

Credit: NASA,ESA, M. Robberto (Space Telescope Science Institute/ESA) and the Hubble Space Telescope Orion Treasury Project Team