Physics 224 The Interstellar Medium

Lecture #2

© Karin Sandstrom, UC San Diego - Do not distribute without permission

- Part I: Overview of Milky Way's ISM
- Part II: Collisional Processes
- Part III: Statistical Mechanics

The Contents of the ISM

- Gas
- Dust

Note: ISM resides in the gravitational potential set by dark matter and stellar mass of a galaxy (sometimes gas mass matters too).

- Photons
- Cosmic Rays
- Magnetic Fields

The Milky Way

0.5

0.0

.0

-2.0

-2.5

10.0

Dark Matter: ~10¹² M_o Stellar Mass: ~10¹¹ M_• ISM Mass: $\sim 6 \times 10^9 M_{\odot}$

$$M = -0.5$$

 $M = -1.0$
 $M = -1.5$

Not the same in all galaxies, some have different ISM/ stellar mass ratios.

GASS Survey (Catinella et al. 2012) gray = shallower ALFALFA survey red = HI detected, green = not detected

Log M. (M_o)

11.0

10.5

11.5

ISM Gas

in MW, approx. 23% ionized, 60% neutral, 17% molecular

characterized by "phases"

Name	T (K)	Ionization	frac of volume	density (cm ⁻³)	P ~ nT (cm ⁻³ K)
hot ionized medium	10 ⁶	H+	0.5(?)	0.004	4000
ionized gas (HII & WIM)	104	H+	0.1	0.2-104	2000 - 10 ⁸
warm neutral medium	5000	Ηo	0.4	0.6	3000
cold neutral medium	100	Ho	0.01	30	3000
diffuse molecular	50	H ₂	0.001	100	5000
dense molecular	10-50	H ₂	10-4	10 ³ -10 ⁶	10 ⁵ - 10 ⁷

© Karin Sandstrom, UC San Diego - Do not distribute without permission

ISM Dust

Gas & dust are well correlated in the disk of the Milky Way, but gas/dust ratio can & does vary.

Element	Abundance	Α	M/M _H	
C*	2 ×10-4	12	0.00252	
O*	1.5 ×10-4	16	0.00246	
Fe	3.5 ×10−⁵	56	0.00196	
Si	3.4 ×10−5	28	0.00095	
Mg	4 ×10 ⁻⁵	24	0.00094	
N,AI,S,Ca, Ni			0.00027	
Total			0.0091	

* uncertainty on oxygen depletion and carbon oscillator strength - see Draine

Dust is mainly composed of C, Mg, Fe, Si, and O.

MW Dust-to-H Ratio ~0.009

Small sub-µm size grains (can tell from reddening)

ISM Radiation Field

Cosmic Rays

Very energetic particles pervading the ISM.

Dominated by protons, but also includes other nuclei and e-.

Magnetic Fields

Planck all-sky map of B-field structure Magnetic Field is closely tied to the gas throughout the Milky Way.

ISM Energy Density

Component	<i>u</i> (eV cm ⁻³)
Cosmic Microwave Background	0.25 (Т _{СМВ} = 2.725 К)
Gas Thermal Energy	0.49 (for nT = 3800 cm ⁻³ K)
Gas Turbulent Kinetic Energy	0.22 (for n = 1 cm ⁻³ , v _{turb} = 1 km/s)
B-Field	0.89 (for 6 µGauss)
Cosmic Rays	1.39 (see Draine ch 13)
Starlight	0.54 (for hv < 13.6 eV)

All the same order of magnitude! - Why?

The ISM is Complex

- Huge dynamic ranges in density, temperature.
- Very dense regions of the ISM are "ultra-high" vacuum
 ISM conditions are tough to reproduce in a lab.
- Most processes are not in thermodynamic equilibrium
 low density means long equilibrium timescales.
- Processes are interconnected in feedback loops.

How does THIS affect THIS	Gravitational Potential	Gas	Dust	Radiation Field	Cosmic Rays	Magnetic Fields	Stars
Gravitational Potential		hydrostatic pressure, dynamics, spiral arms, large scale gas stability	2nd order	2nd order	pressure confinement, dynamical influence (e.g. spiral arms)	gas dynamics, pressure arrange B-field	sets stellar mass distribution, 2nd order hydrostatic pressure -> SF
Gas	self-gravity in dense gas clouds	gas dynamics, collisional excitation, self gravity	dust growth in dense gas, collisional heating/cooling, charging, dust destruction in shocks	alters radiation field (H2 shielding, ionizing photons absorbed)	creation (shocks accelerate), collisions (CR + p+ -> γ ray), confinement (B-field)	dynamically, MHD turbulence, dynamos create/ amplify B-field	star formation
Dust	2nd order	heating/cooling gas, shielding, chemistry, metal abundance (grain sputtering)	grain-grain collisions, shielding small grains from UV	extinction (absorption & scattering)	2nd order	ionization of grains and gas, keeps B-field tied to gas	key role in SF
Radiation Field	2nd order	heating of gas, ionization, photoelectric effect	heating dust, charging grains (PE effect), destruction of small grains		2nd order	ionization of gas, keeps B-field tied to gas	key role in SF
Cosmic Rays	2nd order	ionization in dense gas, connection to B- field	2nd order	2nd order		tied closely to B- field, equipartition?	heats dense gas that forms stars
Magnetic Fields	2nd order	dynamically, MHD turbulence	grain alignment, charged grains coupled to B- field	2nd order	tied closely to B- field, equipartition?	? reconnection & dissipation	dynamically important in collapse -> SF
Stars	large part of the overall mass that sets the grav potential	SNe/winds - dynamics, nucleosynthesis (metals), radiation field generation	create & destroy dust, generate radiation field that heats dust	directly produce it	SNe shocks -> CR	2nd order	feedback shuts off SF

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Collisions govern many key ISM processes

- Distribute energy among particles in the gas (ie from e- ejected from dust by the photoelectric effect or photoionization)
- Collisional Ionization
- Recombination
- Collisional Excitation (can lead to radiative deexcitation and loss of energy from gas)
- Chemical reactions
- Gas-dust grain collisions, grain-grain collisions.
- Etc, etc, etc