
Physics 224: Lecture 2 notes
Spring 2018

General collisional rate definition:

Collisions control many of the key processes in the ISM (see slides for a non-
exhaustive list). We can set up a very general framework, where the collision involves
A+B → products. For different types of collisional processes this could be:

• elastic: scattering where for example A + B → A + B, the particles exchange
momentum in the collision.

• inelastic: scattering where for example A∗ +B → A+B∗, there are changes in
internal energy of the particles as a result of the collision.

• chemical: where for example A + B → C, the product is different than the
initial colliders.

A simple way to think about the interactions is to take a particle A with a cross-
section (imagine just a geometric cross section for simplicity) σA moving with velocity
vA. This would sweep up a volume of σAvA per second. Now imagine there are
particles B with a density nB that for the moment we treat as having very very small
cross sections. The number of collisions of A with B per second would be nBσAvA.
To make this more general we can say that the cross-section for collisions of A and
B is σAB so we don’t ignore the fact that B has some cross-section as well. Likewise,
we can say the velocity of A relative to B is vAB. If the density of A is nA, we get
the following:

collisions per second per volume = nAnBσABvAB (1)

So far this has assumed that all particles have the same vAB, which is not usually
the case. Particles have a distribution of velocities given by a Maxwellian (even in
the ISM there are enough collisions to generally maintain a Maxwellian distribution):

fvdv = 4π
(

µ

2πkT

)3/2

e−µv
2/2kTv2dv (2)

where µ is the reduced mass mAmB/(mA +mB).
To get the reaction rate per volume correct, we need to take into account the

distribution of velocities. We can do this by defining the “two body collisional rate
coefficient” 〈σv〉AB so that the reaction rate per volume = nAnB 〈σv〉AB and:

〈σv〉AB =
∫ ∞
0

σAB(v)vfvdv (3)

This basically is weighting the cross-section (which can depend on velocity) by
the distribution of velocities in the Maxwellian.
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Types of collisions:

There are three basic types of collisions we will discuss:

• “hard sphere” collisions

• charged-neutral particle collisions

• charged-charged particle collisions

It makes sense to separate these this way because they are categorized in order of
how important the long range forces between the particles are in the collision. For
“hard sphere” collisions, the long range forces are unimportant. We can think of
this like two dust grains running into each other–they have physical cross sections
and generally don’t interact until they run into each other. The charged-neutral
interactions have some long-range interaction we can’t ignore in determining their
rate. For charged-charged interactions, the long range forces are very important.

“Hard sphere”: Lets talk first about “hard sphere” collisions. Imagine you have two
particles with different radii rA and rB. Their cross section will be σAB = π(rA+rB)2.
What you’ll notice here is that the cross section is independent of energy or velocity.
We can put this back in our expression above for the collisional rate coefficient:

〈σv〉AB =
∫∞
0 σABv4π

(
µ

2πkT

)3/2
e−µv

2/2kTv2dv (4)

= 4π
(

µ
2πkT

)3/2
σAB

∫∞
0 v3e−µv

2/2kTdv (5)

To solve this, it is easiest to transform to energy units, using the fact that the
probability of finding a particle in a given velocity range of v → v + dv is the same
as in the equivalent energy range E → E + dE since E is a monotonic function of v.
It also helps to switch variables so x = E/kT . Doing both of those things you can
work out that:

〈σv〉AB = σAB
√

8kT
πµ

∫∞
0 xe−x(xkT )dx (6)

〈σv〉AB = σAB
√

8kT
πµ

(7)

since the integral goes to 1.
This tells us that the collisional rate coefficient depends on T 1/2. We can look

at one important ISM example—the collisions between neutral particles. At large
distances the forces between two neutral particles are not strong, but when they
get close enough that their electron clouds begin to interact, it quickly becomes
very strong. This makes the collisions between neutrals behave essentially like hard
spheres running into each other. We can take the radius of the spheres to be ∼ 1 Å
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so σAB = π(2Å)2 ∼ 1.2×10−15 cm2. Putting this into our hard sphere collisional rate
coefficient equation, we can calculate:

〈σv〉AB = 1.81× 10−10
(

T

100K

)1/2 ( µ

mH

)−1/2 (rA + rB

2Å

)2

cm3s−1. (8)

“Charged-Neutral Collisions”: In collisions of charged and neutral particles, the
charged particle will induce a electric dipole moment in the neutral particle, which
then creates a 1/r4 potential. Lets imagine an ion with velocity v and charge Ze
interacting with a neutral particle at rest. In 1/r4 potentials, you can define a critical
impact parameter b0 for an encounter between the charged and neutral particles were
at r < b0 the charged particle experiences a very large deflection from its trajectory.
At r > b0 the deflection is much smaller. The critical impact parameter depends on
the initial kinetic energy of the charged particle in the center of mass frame Ecm.
With these parameters:

b0 =

(
2αNZ

2e2

Ecm

)1/4

(9)

where αN is the polarizability of the neutral particle, which is typically αN ∼ a few
×a30 (where a0 is the Bohr radius).

Using this critical impact parameter to define our cross section, σ = πb20 we find:

σ = πb20 = 2πZe

(
αN
µ

)1/2
1

v
(10)

since Ecm = µv2/2. Putting this into our expression:

〈σv〉AB =
∫∞
0 σAB(v)vfvdv (11)

=
∫∞
0 2πZe

(
αN

µ

)1/2
1
v
vfvdv (12)

= 2πZe
(
αN

µ

)1/2 ∫∞
0 fvdv (13)

= 2πZe
(
αN

µ

)1/2
(14)

Since the integral of the probability distribution function over all velocities is 1 (note:
this is where I messed up with the integral! - there is fv in there still), we end up
with a rate coefficient that doesn’t depend on energy or temperature of the particles.
This means that even in cold regions, when there are charged particles and neutrals,
this rate will be important.

“Charged-Charged Collisions”: In these type of collisions the long range forces
are not negligible so we have to be specific in how we ask questions about cross
sections. For instance, we can ask for what collision impact parameter does a charged
particle moving close to another charged particle gain enough energy to eject an
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electron (i.e. for collisional ionization). To work out these types of interactions we
will use the “impact approximation” - this problem can be solved directly but as the
book says, the integrals are tedious.

Imagine a particle with charge Z2 moving by a particle Z1 with its closest approach
at a distance b. See the diagram in your textbook for this set up. We can calculate
the force between the two particles at every point along its path as:

F⊥ =
Z1Z2e

2

(b/cosθ)2
cosθ (15)

The amount of momentum gained perpendicular to the direction of motion is then
the integral of this force:

∆p⊥ =
∫ ∞
−∞

F⊥dt (16)

Switching from dt to dθ and doing the integral you’ll find:

∆p⊥ = 2
Z1Z2e

2

bv1
(17)

From here you can ask specific questions, like when is the gain of kinetic energy
from the interaction greater than the ionization potential of the collider. We can also
use this set up to address an important collisional process in the ISM: how electrons
or other charged particles distribute their energy among the other gas particles (i.e.
after an electron is ejected by the photoelectric effect from a dust grain, how does it
go on to heat the gas?). To look into this we can imagine the projectile with charge
Z1e moving through a field of charges Z2e. The projectile will get many individual
momentum kicks from collisions and this results in a random walk in the average
perpendicular momentum of the particle. We will start up here in the next lecture!
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