
Physics 224: Lecture 3 notes
Spring 2018

“Charged-Charged Collisions” Continued:

In the previous lecture we started to describe collisions between charged parti-
cles where long-range interactions are not negligible. We will first look into how
quickly a charged particle moving through a field of other charged particles shares
its energy (important example being a photoelectron heating up gas). The set up
involves a particle with charge Z1e moving through a field of particles with Z2e. The
particle undergoes many individual momentum kicks resulting in a random walk in
momentum. We worked out before that:
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We can define:
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Next we need to determine what bmax and bmin are (there must be bounds other-
wise the integral would go to infinity). For bmin we can take the impact parameter
where the assumption of weak interactions breaks down, i.e. where energy in the
center of mass frame, Ecm ∼ Z1Z2e

2/bmin. For bmax we can use the Debye length
LD = (kT/4πnee

2)1/2, which is the length where the plasma will shield excess charge.
In the ISM, typical values for ln Λ ≈ 20− 35.

Given the information above we can work out the time it takes for a charged
particle projectile to lose its energy via interactions with other charged particles:
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As an example, for an electron moving through a field of protons:
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The time to lose energy is less than one year. This tells us that on astronomical
timescales there are more than enough collisions to maintain a Maxwellian velocity
distribution in most situations in the ISM.
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Local Thermodynamic Equilibrium:

Local thermodynamic equilibrium is the situation where the large scale properties
of a region (n, T, radiation field) can vary in space and time, but slowly enough that
for any given point one can assume thermodynamic equilibrium in the vicinity of that
point at a given time. The ISM is general not in LTE. Why:

• The radiation field is often not generated locally (think of a radiation field
dominated by starlight heating a cloud of gas).

• Radiative de-excitation of energy levels can happen quickly compared to colli-
sions (low density). So the Tkinetic (from the Maxwellian velocity distribution)
and Texc (from the energy level populations of an atom) are generally not the
same.

Despite the lack of LTE, there are still many tools from statistical mechanics that
let us understand ISM processes. Specifically, the principle of detailed balance is an
extremely useful tool for understanding various rates coefficients for ISM processes.
In many situations the rate coefficients for various processes are not dependent on
assuming LTE. For example, the collisional coefficients we’ve discussed earlier in
the class only require a Maxwellian velocity distribution to be maintained and we
demonstrated that this is likely to be the case independent of whether the system is
in LTE. The principle of detailed balance lets us determine the relationship between
forward and backward rate coefficients by figuring out what they are in LTE. Lets go
through the process to illustrate. The general set up involves some process with rate
coefficients forward (kf ) and backward (kb):

R1 +R2 +R3 · · · ↔ P1 + P2 + P3 · · · (6)

This can be any process that involves exchange of energy—collisions, populating
energy levels in atoms, chemical reactions, etc.

Lets simplify to A+B → C. In LTE, we can write the following:
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where f(X) is the partition function per volume:
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. The first part of f(X) in the brackets is the translational part of the partition func-
tion, the second part is the internal part - these determine how energy is distributed
among the energy levels. In LTE,

reactions forward
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reactions backward
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Therefore, kfnAnB = kbnC and we can write:
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Lets use the example of collisional excitation of some energy level within an atom
X(l) + Y ↔ X(u) + Y where the energy levels in X are Eu and El.

kul
klu

=
nXl

nY

nXunY

=
nXl

nXu

=
f(X(l))

f(X(u))
(12)

When we write out the partition function, the translational part cancels since MX

and T are the same. All that is left is the internal part:
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where Eul = Eu−El. With detailed balance we have used LTE to get the relationship
between kl and ku, but this relation applies generally because the rate coefficients
only involve the cross section (a property of quantum mechanics or the physical cross
section or similar) and the velocity (which requires a Maxwellian but not LTE). We
will use this sort of trick many times in the coming classes!
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