
PHYS 224 Lec 4

Stella(Yimiao) Zhang

04/09/2018

1 Collision

• only short distance collision: well defined cross section

• Interaction of forces become strong only within a certain region: can still define cross
section

• long range forces dominate in collision: can no longer define cross section. Need to
integrate over whole space

1.1 Collision integral
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When particle moves through fields of other particles, it experiences spikes of momentum
from collision with other particles. These particles are randomly distributed: can be modeled
by random walk (b: impact parameter)
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1.2 random walk and energy distribution
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Ignoring the collision in short range. bmin: small defection. bmax at large distance, particle
shield itself: distance where plasma is neutral (deby length?)
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≈ 20− 35 for typical ISM (9)

How long does it take for energy from incoming particle to be equally distributed among
randomly distributed particles:

tloss =
E

〈dE
dt
〉

=
1
2
m1v

2
1

〈 d
dt

(∆P 2
⊥)〉 /m2

(10)

=
m1m2v

2
2

8πn2Z2
1Z

2
2e

4lnΛ
(11)

For electron moving through protons:

tloss = 1.4× 107s

(
T

104K

)3/2(
1cm−3

ne

)(
lnΛ

25

)−1

(12)

On very short time scale, the energy is shared. Although the ISM is not usually equilib-
rium, can still assume Maxwell distribution of velocity due to fast distribution of energy

1.3 Thermal equilibrium

Characterized by one temperature. More useful to think about local TE (LTE): time and
length scale on which temperature varies are long.

ISM not in LTE, WHY?

• Radiation from stars (nonlocal, temperature not representative of material)
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• The rate of radiative de-excitation becomes quicker than collision (not dependent on
local collision)

⇒ Trad 6= Tkin 6= Tex

1.4 Relationship among temperature through detailed balance

In TE, the followings are true:

• forward and backward rates balance

A+B
kf→−−→
←kb

C

– reaction forward: nAnBkf , kf ∼ 〈σv〉AB
– reaction backward: nCkb

– reaction forward = backward

–
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• from stat mech
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– translational times degenerancy of level

– partition on function per volume

E.x.

X(l) + Y → X(u) + Y, En, El;Eul = Eu − El (13)
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Doesnt have to be in equilibrium as long as we know the energy distribution

E.x.

∆E = Eu − El (17)

XL + hν → Xu (18)
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upward transition, only two levels:(
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uν : energy density of radiation at ν, Blu: Einstein B value ‘absorption’

Downward transition

• spontaneous transition, Einstein A: spontaneous emission

Xu → Xl + hν

• stimulated emission, Einstein B stimulated emission

Xu + hν → Xl + Zhν

Spontaneous transtition
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In LTE
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Now solve:
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