PHYS 224 Lec 4 $\,$

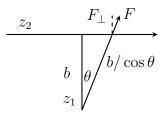
Stella(Yimiao) Zhang

04/09/2018

1 Collision

- only short distance collision: well defined cross section
- Interaction of forces become strong only within a certain region: can still define cross section
- long range forces dominate in collision: can no longer define cross section. Need to integrate over whole space

1.1 Collision integral



$$F_{\perp} = \frac{Z_1 Z_2 e^2}{(b/\cos\theta)^2} \cos\theta \tag{1}$$

$$\Delta P_{\perp} = \int_0^\infty F_{\perp} dt, \ dt \to d\theta \tag{2}$$

$$\Delta P_{\perp} = \frac{2Z_1 Z_2 e^2}{bv_2} \tag{3}$$

When particle moves through fields of other particles, it experiences spikes of momentum from collision with other particles. These particles are randomly distributed: can be modeled by random walk (b: impact parameter)

1.2 random walk and energy distribution

$$\sqrt{\langle \vec{R} \cdot \vec{R} \rangle} = \sqrt{NL^2} \tag{4}$$

$$\frac{d}{dt} \left\langle \Delta P_{\perp}^2 \right\rangle = \int_{b_{\min}}^{b_{\max}} \underbrace{2\pi b db n_2 v_1}_{\text{collision rate}} \times \underbrace{\left(\Delta P_{\perp}\right)^2}_{\text{step } \Delta P_{\perp}} \tag{5}$$

$$\frac{d}{dt} \left\langle \Delta P_{\perp}^2 \right\rangle = \frac{8\pi n_2 Z_1^2 Z_2^2 e^2}{v_1} \underbrace{\int_{b_{\min}}^{b_{\max}} \frac{db}{b}}_{l_n \Lambda} \tag{6}$$

Ignoring the collision in short range. b_{\min} : small defection. b_{\max} at large distance, particle shield itself: distance where plasma is neutral (deby length?)

$$E_{cm} \approx \frac{Z_1 Z_2 E^2}{B_{\min}} \tag{7}$$

$$L_D = 690cm \left(\frac{T}{10^4 K}\right)^{1/2} \left(\frac{1cm^{-3}}{n_e}\right)^{1/2}$$
(8)

$$\Lambda \equiv \frac{b_{\text{max}}}{b_{\text{min}}} \approx 20 - 35 \text{ for typical ISM}$$
(9)

How long does it take for energy from incoming particle to be equally distributed among randomly distributed particles:

$$t_{\rm loss} = \frac{E}{\langle \frac{dE}{dt} \rangle} = \frac{\frac{1}{2}m_1 v_1^2}{\langle \frac{d}{dt} (\Delta P_{\perp}^2) \rangle / m_2}$$
(10)

$$=\frac{m_1 m_2 v_2^2}{8\pi n_2 Z_1^2 Z_2^2 e^4 l_n \Lambda} \tag{11}$$

For electron moving through protons:

$$t_{\rm loss} = 1.4 \times 10^7 s \left(\frac{T}{10^4 K}\right)^{3/2} \left(\frac{1 cm^{-3}}{n_e}\right) \left(\frac{l_n \Lambda}{25}\right)^{-1}$$
(12)

On very short time scale, the energy is shared. Although the ISM is not usually equilibrium, can still assume Maxwell distribution of velocity due to fast distribution of energy

1.3 Thermal equilibrium

Characterized by one temperature. More useful to think about local TE (LTE): time and length scale on which temperature varies are long.

ISM not in LTE, WHY?

• Radiation from stars (nonlocal, temperature not representative of material)

• The rate of radiative de-excitation becomes quicker than collision (not dependent on local collision)

$$\Rightarrow T_{rad} \neq T_{kin} \neq T_{ex}$$

1.4 Relationship among temperature through detailed balance

In TE, the followings are true:

• forward and backward rates balance

$$A + B \xrightarrow[\leftarrow k_b]{k_f \to} C$$

- reaction forward: $n_A n_B k_f, k_f \sim \langle \sigma v \rangle_{AB}$
- reaction backward: $n_C k_b$
- reaction forward = backward

_

$$\frac{k_f}{k_b} = \frac{n_C}{n_A n_B}$$

• from stat mech

$$\left. \frac{n_C}{n_A n_B} \right|_E = \frac{f(C,T)}{f(A,T)f(B,T)} \text{ detailed balance}$$

$$-f(x,T) = \frac{Z}{V} = \frac{Z_{\text{trans}} \times Z_{\text{internal}}}{V} = \frac{(2\pi m_x kT)^{3/2}}{h^3} \times \sum_i g_i e^{-E_i/kt}$$

- $-\,$ translational times degenerancy of level
- partition on function per volume

E.x.

$$X(l) + Y \to X(u) + Y, \ E_n, E_l; E_{ul} = E_u - E_l$$
 (13)

$$\frac{k_u l}{k_l u} = \frac{n_{x_l} n_y}{n_{x_u} n_y} = \frac{f(X(l), T)}{f(X(u), T)}$$
(14)

$$Z_{int}(X(l),T) = g_l e^{-E_l/kT}$$
(15)

$$\frac{k_u l}{k_l u} = \frac{g_l}{g_u} e^{E_{ul}/kT} \tag{16}$$

Doesnt have to be in equilibrium as long as we know the energy distribution

E.x.

$$\Delta E = E_u - E_l \tag{17}$$

$$X_L + h\nu \to X_u \tag{18}$$

upward transition, only two levels:

$$\left(\frac{dn_u}{dt}\right)_{l\to u} = -\left(\frac{dn_l}{dt}\right)_{l\to u} = n_l u_\nu B_{lu} \sim n_A n_B \left\langle \sigma v \right\rangle_{AB}$$

 u_{ν} : energy density of radiation at ν , B_{lu} : Einstein B value 'absorption' Downward transition

• spontaneous transition, Einstein A: spontaneous emission

$$X_u \to X_l + h\nu$$

• stimulated emission, Einstein B stimulated emission

$$X_u + h\nu \to X_l + Zh\nu$$

Spontaneous transition
$$\left(\frac{dn_l}{dt}\right)_{u\to l} = -\left(\frac{dn_u}{dt}\right)_{u\to l} = n_u A_{ul} + n_u u_{\nu} B_{ul}$$
 (19)

In LTE

$$u_{\nu,LTE} = \frac{4\pi}{C} B_{\nu} = \frac{8\pi h\nu^2}{c^3} \frac{1}{e^{h\nu}kT - 1}$$
$$\frac{n_u}{n_l} = \frac{g_l}{g_u} e^{\Delta E/kT}$$

$$\frac{dn_u}{dt} = 0 = \left(\frac{dn_u}{dt}\right)_{l \to u} + \left(\frac{dn_l}{dt}\right)_{u \to l}$$

$$T_{rad} = T_{ex}$$

Now solve:

$$n_l B_{lu} n_{\nu} = n_{\nu} (A_{ul} + B_{ul} u_{\nu}) \tag{20}$$

$$n_{\nu} = \frac{A_{ul}/B_{ul}}{\left(\frac{n_l}{n_u}\right)\left(\frac{B_{lu}}{B_{ul}} - 1\right)} = \frac{A_{ul}/B_{ul}}{\frac{g_l B_{lu}}{g_u B_{ul}}e^{h\nu/kT} - 1} = \frac{8\pi h\nu^2}{c^3} \frac{1}{e^{h\nu}kT - 1}$$
(21)

$$\frac{g_l B_{lu}}{g_u B_{ul}} = 1 \tag{22}$$

$$B_{ul} = \frac{c^3}{8\pi h\nu^3} A_{ul} \tag{23}$$