Physics 224 The Interstellar Medium

Lecture #4

- Part I: Energy Levels & Transitions in Atoms
- Part II: Order of Magnitude Energy Levels
- Next: Radiative Transfer

Ionized Gas

Ionized Gas

Molecular Gas

- Given some ion, atom or molecule what sets the spacing between energy levels?
- How likely (or how frequently) do transitions between the various levels occur?

Energy Levels of Atoms & lons

First need to know how electrons are configured in atom/ion: Set by the quantum numbers that describe the wave-function

- *n* = principle quantum number
- $l = orbital angular momentum in units of <math>\hbar (0 \le l < n)$

$$m_z = \text{proj. of angular mom. on z axis } (-l \le m_z \le l)$$

e- spin = -ħ/2 or +ħ/2

degenerate (same energy) w/o applied B-field

Energy Levels of Atoms & lons

How do we arrange e- in a multi-electron atom?

Pauli exclusion principle says:

electrons can't share the same wave-function $(n, l, m_z, spin)$

For ground state configuration: fill up "subshells" from lowest energy up subshell = combination of *nl* designated by number *n* and letter for *l* (0=s, 1=p, 2=d, 3=f, ...)

$$l = 0$$
 $l = 1$ $l = 2$

For ground state (lowest energy): Subshells are filled in order of increasing n+l, and then in order of increasing n.

Number of electrons in each subshell listed with

$$l = 0$$
 $l = 1$ $l = 2$

	Element	Electron configura- tion	Ground term	E, [eV]	Element	Electron configura- tion	Ground term
	1 H	15	² S _{1/2}	13.598	51 Sb	5s² 5p'	*S,/2
	2 He	1 s ²	1So	24.587	52 Te	5s2 5p4	3P2
	3 Li	2.s	${}^{2}S_{1/2}$	5.392	53 I	5s3 5p3	2P3/2
	4 Be	2.5²	<i>'S</i>	9.322	54 Xe	5s2 5p6	15.
	5 B	2s² 2p	${}^{2}P_{1/2}$	8.298	55 Cs	6s	2S1/2
	6 C	$2s^2 2p^2$	3P.	11.260	56 Ba	6 <i>s</i> ²	1S.
	7 N	$2s^2 2p^3$	*S3/2	14.534	57 La	5d 65²	${}^{2}D_{1/2}$
	8 O	2s² 2p4	³ P ₂	13.618	58 Ce	4f 5d 6s ²	1G,?
	9 F	2s2 2p3	² P _{3/2}	17.422	59 Pr	4f3 6s2	4/ ./2?
۱y	10 Ne	2s ² 2p ⁶	'S,	21.564	60 Nd	4f4 652	٩,
-	11 Na	3 <i>s</i>	${}^{2}S_{1/2}$	5.139	61 Pm	4fs 6s2	•H 1/2?
	12 Mg	3s2	'S.	7.646	62 Sm	4f6 6s2	7F。
J	13 Al	3s² 3p	${}^{2}P_{1/2}$	5.986	63 Eu	4f7 6s2	S 1/2
a,	14 Si	3s² 3p²	Po	8.151	64 Gd	4f7 5d 6s2	°D,
	15 P	3s² 3p3	4S3/2	10.486	65 Tb	4f° 6s2	•H 13/2
	16 S	3s² 3p4	3P2	10.360	66 Dy	4f 10 6s2	s] ?
	17 Cl	3s2 3p5	² P _{3/2}	12.967	67 Ho	4f11 6s2	4/11/2?
	18 A.	352 3p6	1S.	15.759	68 Er	4f12 6s2	3H.?
	19 K	4 <i>s</i>	${}^{2}S_{1/2}$	4.341	69 Tm	4f13 6s2	2F 1/2
	20 Ca	4 <i>5</i> ²	1S.	6.113	70 Yb	4f14 6s2	1S.
	21 Sc	3d 4s²	$^{2}D_{1/2}$	6.54	71 Lu	5d 6s ²	2D./2
	22 Ti	$3d^2 4s^2$	γF,	6.82	72 Hf	5d ² 6s ²	3F,
	23 V	$3d^3 4s^2$	4F3/2	6.74	73 Ta	5d3 6s2	4F.,/2
	24 Cr	3d° 4s	⁷ S,	6.766	74 W	5d4 6s2	³ D ₀
	25 Mn	3d ⁵ 4s ²	•S./2	7.435	75 Re	5ds 6s2	·S./2
	26 Fe	3d ⁶ 4s ²	³ D,	7.870	76 Os	5d° 6s2	³ D,
	27 Co	3d7 4s2	4F.12	7.86	7 7 Ir	5d7 6s2	F.,?
	28 Ni	3d* 4s2	3F.	7.635	78 Pt	5d° 6s	۶D,
	29 Cu	4 <i>s</i>	2S1/2	7.726	79 Au	6 <i>s</i>	2S./2
without permission	20.7-	4-2	10	0.004	80 11-	6.2	10

Table 2.1 – Electron configuration of atoms

Note that in many tables "closed" shells aren't listed, e.g. 1s² 2s² 2p⁶

 \rightarrow 1s 2s

<u>Multiple possibilities for distributing e- in unfilled subshell,</u> <u>lead to different overall angular momentum</u>

L = vector sum of angular momentum S = vector sum of spin angular momentum J = L + S = total angular momentum $\mathbf{L} = \sum_{i} \mathbf{l}_{i}$ $\mathbf{S} = \sum_{i} \mathbf{s}_{i}$

Note that full shells and subshells do not contribute to the angular momentum: $\mathbf{J} = \mathbf{L} = \mathbf{S} = 0$

Why is this important: Different combinations of ${\bf L}$ and ${\bf S}$ have different energies.

L-S Coupling: Total spin S interacts with total angular momentum L ("spin-orbit coupling")

Larger Spin has Lower energy (usually)

Spectroscopic Notation

The "Spectroscopic Term"

helps to keep track of the configuration of the electrons

L = vector sum of angular momentum S = vector sum of spin angular momentum J = L + S = total angular momentum

- z component of the total angular momentum can have values between
 L and L, i.e. (2L+1) degenerate levels
- z component of the total spin can have values between -S and S, i.e. (2S+1) degenerate levels

Each L and S has (2L+1)(2S+1) possible *m_z* & spin combinations.

Calculating Spectroscopic Terms:

$$2S+1 \mathcal{L}_{J}^{p}$$

$$\mathbf{L} = \sum_{i} \mathbf{l}_{i} \quad \mathbf{S} = \sum_{i} \mathbf{s}_{i} \quad \mathbf{J} = \mathbf{L} + \mathbf{S}$$
Configuration of 2 electrons: 1s2s

$$m_{l1}=0, m_{l2}=0, \mathbf{L}=0 \xrightarrow{1} \mathbf{S}_{0}$$

$$m_{s1}=\pm\frac{1}{2}, m_{s2}=\pm\frac{1}{2}, \mathbf{S}=0,1$$

$$\mathbf{J} = \mathbf{L} + \mathbf{S} \text{ so } \mathbf{J} = 0,1 \xrightarrow{3} \mathbf{S}_{1}$$
Possible Terms: 1S₀, 3S₁

Calculating Spectroscopic Terms:

Possible Spectroscopic Terms for 2 electrons in p (for p, recall l = 1, so L can be 0,1,2)

However, not all of these work - lets see why...

"Non-Equivalent" electrons (i.e. 2p3p, different *n*) all 36 combinations are allowed:

(mz, ms)	(+1, +1/2)	(0, +1/2)	(-1, +1/2)	(+1, -1/2)	(0, -1/2)	(-1, -1/2)
(+1, +1/2)	L, S = +2, +1	+1, +1	0, +1	+2, 0	+1,0	0, 0
(0, +1/2)	+1, +1	0, +1	-1, +1	+1, +1	0, 0	-1, 0
(-1, +1/2)	0, +1	-1, +1	-2, +1	0, 0	-1, 0	-2, 0
(+1, -1/2)	+2, 0	+1,0	0, 0	+2, -1	+1, -1	0, -1
(0, -1/2)	+1, 0	0, 0	-1, 0	+1, -1	0, -1	-1, -1
(-1, -1/2)	0, 0	-1, 0	-2, 0	0, -1	-1, -1	-2, -1

"Equivalent" electrons (i.e. 2p², same *n*) only 15 combinations allowed (b.c. exclusion principle)

(mz, ms)	(+1, +1/2)	(0, +1/2)	(-1, +1/2)	(+1, -1/2)	(0, -1/2)	(-1, -1/2)
(+1, +1/2)	+2, +1	+1, +1	0, +1	+2, 0	+1, 0	0, 0
(0, +1/2)	+1, +1	0, +1	-1, +1	+1, +1	0, 0	-1, 0
(-1, +1/2)	0, +1	-1, +1	-2, +1	0, 0	-1, 0	-2, 0
(+1, -1/2)	+2, 0	+1,0	0, 0	+2, -1	+1, -1	0, -1
(0, -1/2)	+1, 0	0, 0	-1, 0	+1, -1	0, -1	-1, -1
(-1, -1/2)	0, 0	-1, 0	-2, 0	0, -1	-1, -1	-2, -1

Possible Terms for 2 equivalent electrons in p

Only 15 combinations allowed - some terms don't work when electrons are equivalent

For 2 electrons in p, possible terms are ¹S, ³P, ¹D

It gets complicated & tedious to do this for more electrons or for excited states. Just look it up!

Non	equivalent electrons	Equivalent electrons		
Configuration	Terms	Configuration	Terms ^a	
s^1s^1	^{1,3} S	p^2	${}^{1}S, {}^{3}P, {}^{1}D$	
s^1p^1	$^{1,3}P$	p^3	${}^{4}S,{}^{2}P,{}^{2}D$	
s^1d^1	$^{1,3}D$	d^2	${}^{1}S, {}^{3}P, {}^{1}D, {}^{3}F, {}^{1}G$	
$s^1 f^1$	$^{1,3}F$	d^3	${}^{2}P, {}^{4}P, {}^{2}D(2), {}^{2}F,$	
p^1p^1	$^{1,3}S, ^{1,3}P, ^{1,3}D$		${}^{4}F, {}^{2}G, {}^{2}H$	
p^1d^1	$^{1,3}P$, $^{1,3}D$, $^{1,3}F$	d^4	$^{1}S(2), ^{3}P(2), ^{1}D(2),$	
p^1f^1	$^{1,3}D, ^{1,3}F, ^{1,3}G$		$^{3}D, ^{5}D, ^{1}F, ^{3}F(2),$	
d^1d^1	$^{1,3}S, ^{1,3}P, ^{1,3}D, ^{1,3}F, ^{1,3}G$		${}^{1}G(2), {}^{3}G, {}^{3}H, {}^{1}I$	
d^1f^1	$^{1,3}P, ^{1,3}D, ^{1,3}F, ^{1,3}G, ^{1,3}H$	d^5	${}^{2}S, {}^{6}S, {}^{2}P, {}^{4}P, {}^{2}D(3),$	
$f^{1}f^{1}$	$^{1,3}S, ^{1,3}P, ^{1,3}D, ^{1,3}F, ^{1,3}G,$		${}^{4}D,{}^{2}F(2),{}^{4}F,{}^{2}G(2),$	
	$^{1,3}H,^{1,3}I$		${}^{4}G,{}^{2}H,{}^{2}I$	

Table 7.2 Terms arising from some configurations of non-equivalent and equivalent electrons

^a The numbers in brackets indicate that a particular term occurs more than once.

from Modern Spectroscopy by Hollas

Energy Levels \longleftrightarrow Terms

2**S**+1 Carbon: ^{1}S Energy 2p² 3**P**

"Hund's Rules"

- 1) Terms w/larger spin generally have lower energy.
- 2) For terms with given configuration and spin, larger L has lower energy.
- 3) Higher J = higher energy if shell is less than half full (opposite otherwise).

Other examples of np² ground state configurations

First nine energy levels for 6 electron config, eg NII

Selection Rules for Transitions

We can now figure out the energy levels, what about the transitions between them?

Type of Transition	Mechanism	Selection Rules		
"allowed"	electric dipole	 Parity must change ΔL = 0, ±1 ΔJ = 0, ±1 but not J=0→0 only one e- wavefunction <i>nl</i> changes with Δ<i>l</i> = ±1 ΔS = 0 		
"semi- forbidden" or "intersystem"	electric dipole but with $\Delta S \neq 0$ from configuration mixing due to relativistic effects	same as "allowed" except violates #5		
"forbidden"	magnetic dipole or electric quadrupole	violates at least one other selection rule other than #5		

NII 1084.0 Å ³P₀ - ³D₁°

2**S**+1

Reminder: if we know the Einstein A value, we know all of the other Einstein B values too, including the rate coefficient for absorption (B_{lu})

 $B_{lu} = (g_u/g_l)B_{ul}$

$$B_{lu} \propto A_{ul}$$

 $B_{ul} = (c^3/(8\pi hv^3)) A_{ul}$

When Einstein A value is very small, low coefficient for absorption.

Forbidden transitions are very important in astronomy!

Collisions populate the levels of the ground state

There is a low probability for transitions so the line is generally optically thin

When there is a radiative transition, that energy escapes! Very important for cooling!

Fine and Hyperfine Structure Transitions

Fine & Hyperfine are "forbidden" parity doesn't change ∆S ≠ 0

-fine structure transitions (transitions within a term, e.g. ${}^{2}P_{1/2} - {}^{2}P_{3/2}$ 158µm line of [CII] within ${}^{2}P$ term)

-hyperfine structure transitions (transitions within a given level of a term caused by splitting due to interaction of electron & nuclear spin, e.g. HI 21 cm spin-flip transition)